Spaces:
Runtime error
Runtime error
update
Browse files- feature_pipeline.ipynb +282 -0
- feedback.db +0 -0
- gradioapp.py +40 -46
- modeltrain.py +0 -102
- pinecone_handler.py +2 -1
- settings.py +2 -1
- app.py → streamlit_app.py +0 -0
- training_pipeline.ipynb +641 -0
feature_pipeline.ipynb
ADDED
|
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 3,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import hopsworks\n",
|
| 10 |
+
"import os\n",
|
| 11 |
+
"import re\n",
|
| 12 |
+
"from dotenv import load_dotenv"
|
| 13 |
+
]
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"cell_type": "code",
|
| 17 |
+
"execution_count": 5,
|
| 18 |
+
"metadata": {},
|
| 19 |
+
"outputs": [
|
| 20 |
+
{
|
| 21 |
+
"name": "stdout",
|
| 22 |
+
"output_type": "stream",
|
| 23 |
+
"text": [
|
| 24 |
+
"2025-01-08 19:51:38,754 INFO: Closing external client and cleaning up certificates.\n",
|
| 25 |
+
"Connection closed.\n",
|
| 26 |
+
"2025-01-08 19:51:38,758 INFO: Initializing external client\n",
|
| 27 |
+
"2025-01-08 19:51:38,758 INFO: Base URL: https://c.app.hopsworks.ai:443\n",
|
| 28 |
+
"2025-01-08 19:51:39,828 INFO: Python Engine initialized.\n",
|
| 29 |
+
"\n",
|
| 30 |
+
"Logged in to project, explore it here https://c.app.hopsworks.ai:443/p/1158296\n"
|
| 31 |
+
]
|
| 32 |
+
}
|
| 33 |
+
],
|
| 34 |
+
"source": [
|
| 35 |
+
"load_dotenv()\n",
|
| 36 |
+
"\n",
|
| 37 |
+
"api_key = os.getenv(\"HOPSWORKS_API_KEY\")\n",
|
| 38 |
+
"project = hopsworks.login(project=\"orestavf\", api_key_value=api_key)"
|
| 39 |
+
]
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"cell_type": "code",
|
| 43 |
+
"execution_count": 5,
|
| 44 |
+
"metadata": {},
|
| 45 |
+
"outputs": [],
|
| 46 |
+
"source": [
|
| 47 |
+
"fs = project.get_feature_store()"
|
| 48 |
+
]
|
| 49 |
+
},
|
| 50 |
+
{
|
| 51 |
+
"cell_type": "code",
|
| 52 |
+
"execution_count": 6,
|
| 53 |
+
"metadata": {},
|
| 54 |
+
"outputs": [],
|
| 55 |
+
"source": [
|
| 56 |
+
"# Retrieve feature groups\n",
|
| 57 |
+
"feedback_fg = fs.get_feature_group(name=\"job_feedback\", version=1)"
|
| 58 |
+
]
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"cell_type": "code",
|
| 62 |
+
"execution_count": 24,
|
| 63 |
+
"metadata": {},
|
| 64 |
+
"outputs": [
|
| 65 |
+
{
|
| 66 |
+
"name": "stdout",
|
| 67 |
+
"output_type": "stream",
|
| 68 |
+
"text": [
|
| 69 |
+
"Finished: Reading data from Hopsworks, using Hopsworks Feature Query Service (0.93s) \n"
|
| 70 |
+
]
|
| 71 |
+
}
|
| 72 |
+
],
|
| 73 |
+
"source": [
|
| 74 |
+
"feedback_df = feedback_fg.read()"
|
| 75 |
+
]
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"cell_type": "code",
|
| 79 |
+
"execution_count": 14,
|
| 80 |
+
"metadata": {},
|
| 81 |
+
"outputs": [
|
| 82 |
+
{
|
| 83 |
+
"data": {
|
| 84 |
+
"text/html": [
|
| 85 |
+
"<div>\n",
|
| 86 |
+
"<style scoped>\n",
|
| 87 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 88 |
+
" vertical-align: middle;\n",
|
| 89 |
+
" }\n",
|
| 90 |
+
"\n",
|
| 91 |
+
" .dataframe tbody tr th {\n",
|
| 92 |
+
" vertical-align: top;\n",
|
| 93 |
+
" }\n",
|
| 94 |
+
"\n",
|
| 95 |
+
" .dataframe thead th {\n",
|
| 96 |
+
" text-align: right;\n",
|
| 97 |
+
" }\n",
|
| 98 |
+
"</style>\n",
|
| 99 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 100 |
+
" <thead>\n",
|
| 101 |
+
" <tr style=\"text-align: right;\">\n",
|
| 102 |
+
" <th></th>\n",
|
| 103 |
+
" <th>job_id</th>\n",
|
| 104 |
+
" <th>resume_text</th>\n",
|
| 105 |
+
" <th>job_headline</th>\n",
|
| 106 |
+
" <th>job_occupation</th>\n",
|
| 107 |
+
" <th>job_description</th>\n",
|
| 108 |
+
" <th>is_relevant</th>\n",
|
| 109 |
+
" </tr>\n",
|
| 110 |
+
" </thead>\n",
|
| 111 |
+
" <tbody>\n",
|
| 112 |
+
" <tr>\n",
|
| 113 |
+
" <th>0</th>\n",
|
| 114 |
+
" <td>29321628</td>\n",
|
| 115 |
+
" <td>Filip Orestav \\nTransformatorvägen 6, Sollent...</td>\n",
|
| 116 |
+
" <td>Junior Projektadmin till talangprogram på AFRY...</td>\n",
|
| 117 |
+
" <td>Projektledare, bygg och anläggning</td>\n",
|
| 118 |
+
" <td>Vill du kickstarta din karriär hos en av Sveri...</td>\n",
|
| 119 |
+
" <td>True</td>\n",
|
| 120 |
+
" </tr>\n",
|
| 121 |
+
" </tbody>\n",
|
| 122 |
+
"</table>\n",
|
| 123 |
+
"</div>"
|
| 124 |
+
],
|
| 125 |
+
"text/plain": [
|
| 126 |
+
" job_id resume_text \\\n",
|
| 127 |
+
"0 29321628 Filip Orestav \\nTransformatorvägen 6, Sollent... \n",
|
| 128 |
+
"\n",
|
| 129 |
+
" job_headline \\\n",
|
| 130 |
+
"0 Junior Projektadmin till talangprogram på AFRY... \n",
|
| 131 |
+
"\n",
|
| 132 |
+
" job_occupation \\\n",
|
| 133 |
+
"0 Projektledare, bygg och anläggning \n",
|
| 134 |
+
"\n",
|
| 135 |
+
" job_description is_relevant \n",
|
| 136 |
+
"0 Vill du kickstarta din karriär hos en av Sveri... True "
|
| 137 |
+
]
|
| 138 |
+
},
|
| 139 |
+
"execution_count": 14,
|
| 140 |
+
"metadata": {},
|
| 141 |
+
"output_type": "execute_result"
|
| 142 |
+
}
|
| 143 |
+
],
|
| 144 |
+
"source": [
|
| 145 |
+
"feedback_df.head()"
|
| 146 |
+
]
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"cell_type": "code",
|
| 150 |
+
"execution_count": 25,
|
| 151 |
+
"metadata": {},
|
| 152 |
+
"outputs": [],
|
| 153 |
+
"source": [
|
| 154 |
+
"# Columns to preprocess\n",
|
| 155 |
+
"columns_to_process = ['resume_text', 'job_headline', 'job_occupation', 'job_description']"
|
| 156 |
+
]
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"cell_type": "code",
|
| 160 |
+
"execution_count": 26,
|
| 161 |
+
"metadata": {},
|
| 162 |
+
"outputs": [],
|
| 163 |
+
"source": [
|
| 164 |
+
"# Define preprocessing functions\n",
|
| 165 |
+
"def preprocess_text(text):\n",
|
| 166 |
+
" if isinstance(text, str):\n",
|
| 167 |
+
" # Lowercase\n",
|
| 168 |
+
" text = text.lower()\n",
|
| 169 |
+
" # Remove special characters (preserving letters, numbers, and spaces)\n",
|
| 170 |
+
" text = re.sub(r\"[^a-zåäöA-Z0-9\\s]\", \"\", text)\n",
|
| 171 |
+
" # Remove extra spaces\n",
|
| 172 |
+
" text = re.sub(r\"\\s+\", \" \", text)\n",
|
| 173 |
+
" return text.strip() # Strip leading/trailing spaces\n",
|
| 174 |
+
" return text"
|
| 175 |
+
]
|
| 176 |
+
},
|
| 177 |
+
{
|
| 178 |
+
"cell_type": "code",
|
| 179 |
+
"execution_count": 28,
|
| 180 |
+
"metadata": {},
|
| 181 |
+
"outputs": [
|
| 182 |
+
{
|
| 183 |
+
"name": "stdout",
|
| 184 |
+
"output_type": "stream",
|
| 185 |
+
"text": [
|
| 186 |
+
"2025-01-08 18:38:35,968 WARNING: FutureWarning: DataFrame.applymap has been deprecated. Use DataFrame.map instead.\n",
|
| 187 |
+
"\n"
|
| 188 |
+
]
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"data": {
|
| 192 |
+
"text/html": [
|
| 193 |
+
"<div>\n",
|
| 194 |
+
"<style scoped>\n",
|
| 195 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 196 |
+
" vertical-align: middle;\n",
|
| 197 |
+
" }\n",
|
| 198 |
+
"\n",
|
| 199 |
+
" .dataframe tbody tr th {\n",
|
| 200 |
+
" vertical-align: top;\n",
|
| 201 |
+
" }\n",
|
| 202 |
+
"\n",
|
| 203 |
+
" .dataframe thead th {\n",
|
| 204 |
+
" text-align: right;\n",
|
| 205 |
+
" }\n",
|
| 206 |
+
"</style>\n",
|
| 207 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 208 |
+
" <thead>\n",
|
| 209 |
+
" <tr style=\"text-align: right;\">\n",
|
| 210 |
+
" <th></th>\n",
|
| 211 |
+
" <th>job_id</th>\n",
|
| 212 |
+
" <th>resume_text</th>\n",
|
| 213 |
+
" <th>job_headline</th>\n",
|
| 214 |
+
" <th>job_occupation</th>\n",
|
| 215 |
+
" <th>job_description</th>\n",
|
| 216 |
+
" <th>is_relevant</th>\n",
|
| 217 |
+
" </tr>\n",
|
| 218 |
+
" </thead>\n",
|
| 219 |
+
" <tbody>\n",
|
| 220 |
+
" <tr>\n",
|
| 221 |
+
" <th>0</th>\n",
|
| 222 |
+
" <td>29321628</td>\n",
|
| 223 |
+
" <td>filip orestav transformatorvägen 6 sollentuna ...</td>\n",
|
| 224 |
+
" <td>junior projektadmin till talangprogram på afry...</td>\n",
|
| 225 |
+
" <td>projektledare bygg och anläggning</td>\n",
|
| 226 |
+
" <td>vill du kickstarta din karriär hos en av sveri...</td>\n",
|
| 227 |
+
" <td>True</td>\n",
|
| 228 |
+
" </tr>\n",
|
| 229 |
+
" </tbody>\n",
|
| 230 |
+
"</table>\n",
|
| 231 |
+
"</div>"
|
| 232 |
+
],
|
| 233 |
+
"text/plain": [
|
| 234 |
+
" job_id resume_text \\\n",
|
| 235 |
+
"0 29321628 filip orestav transformatorvägen 6 sollentuna ... \n",
|
| 236 |
+
"\n",
|
| 237 |
+
" job_headline \\\n",
|
| 238 |
+
"0 junior projektadmin till talangprogram på afry... \n",
|
| 239 |
+
"\n",
|
| 240 |
+
" job_occupation \\\n",
|
| 241 |
+
"0 projektledare bygg och anläggning \n",
|
| 242 |
+
"\n",
|
| 243 |
+
" job_description is_relevant \n",
|
| 244 |
+
"0 vill du kickstarta din karriär hos en av sveri... True "
|
| 245 |
+
]
|
| 246 |
+
},
|
| 247 |
+
"execution_count": 28,
|
| 248 |
+
"metadata": {},
|
| 249 |
+
"output_type": "execute_result"
|
| 250 |
+
}
|
| 251 |
+
],
|
| 252 |
+
"source": [
|
| 253 |
+
"# Apply preprocessing\n",
|
| 254 |
+
"feedback_df[columns_to_process] = feedback_df[columns_to_process].applymap(preprocess_text)\n",
|
| 255 |
+
"\n",
|
| 256 |
+
"# Display processed dataframe\n",
|
| 257 |
+
"feedback_df.head()"
|
| 258 |
+
]
|
| 259 |
+
}
|
| 260 |
+
],
|
| 261 |
+
"metadata": {
|
| 262 |
+
"kernelspec": {
|
| 263 |
+
"display_name": "venv",
|
| 264 |
+
"language": "python",
|
| 265 |
+
"name": "python3"
|
| 266 |
+
},
|
| 267 |
+
"language_info": {
|
| 268 |
+
"codemirror_mode": {
|
| 269 |
+
"name": "ipython",
|
| 270 |
+
"version": 3
|
| 271 |
+
},
|
| 272 |
+
"file_extension": ".py",
|
| 273 |
+
"mimetype": "text/x-python",
|
| 274 |
+
"name": "python",
|
| 275 |
+
"nbconvert_exporter": "python",
|
| 276 |
+
"pygments_lexer": "ipython3",
|
| 277 |
+
"version": "3.12.2"
|
| 278 |
+
}
|
| 279 |
+
},
|
| 280 |
+
"nbformat": 4,
|
| 281 |
+
"nbformat_minor": 2
|
| 282 |
+
}
|
feedback.db
DELETED
|
Binary file (61.4 kB)
|
|
|
gradioapp.py
CHANGED
|
@@ -7,50 +7,43 @@ from pinecone_handler import PineconeHandler
|
|
| 7 |
from datetime import datetime
|
| 8 |
import sqlite3
|
| 9 |
import threading
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
class Database:
|
| 12 |
-
def __init__(self
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
cursor = conn.cursor()
|
| 25 |
-
cursor.execute('''
|
| 26 |
-
CREATE TABLE IF NOT EXISTS feedback (
|
| 27 |
-
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 28 |
-
job_id TEXT,
|
| 29 |
-
resume_text TEXT,
|
| 30 |
-
job_headline TEXT,
|
| 31 |
-
job_occupation TEXT,
|
| 32 |
-
job_description TEXT,
|
| 33 |
-
is_relevant BOOLEAN,
|
| 34 |
-
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
|
| 35 |
)
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
(
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
conn.rollback()
|
| 53 |
-
raise e
|
| 54 |
|
| 55 |
def extract_text(file) -> Optional[str]:
|
| 56 |
"""Extract text from uploaded resume file"""
|
|
@@ -121,12 +114,12 @@ class JobMatcher:
|
|
| 121 |
try:
|
| 122 |
# Find the job in current results by Pinecone ID
|
| 123 |
job = next((job for job in self.current_results if job['id'] == pinecone_id), None)
|
| 124 |
-
|
| 125 |
if not job:
|
| 126 |
return "Error: Job not found"
|
| 127 |
-
|
| 128 |
metadata = job['metadata']
|
| 129 |
-
|
| 130 |
self.db.save_feedback(
|
| 131 |
job_id=pinecone_id, # Use Pinecone's ID
|
| 132 |
resume_text=self.current_resume_text,
|
|
@@ -135,10 +128,11 @@ class JobMatcher:
|
|
| 135 |
description=metadata['description'],
|
| 136 |
is_relevant=is_relevant
|
| 137 |
)
|
| 138 |
-
return f"
|
| 139 |
except Exception as e:
|
| 140 |
return f"Error saving feedback: {str(e)}"
|
| 141 |
|
|
|
|
| 142 |
def create_interface():
|
| 143 |
matcher = JobMatcher()
|
| 144 |
|
|
@@ -258,4 +252,4 @@ def create_interface():
|
|
| 258 |
|
| 259 |
if __name__ == "__main__":
|
| 260 |
interface = create_interface()
|
| 261 |
-
interface.launch()
|
|
|
|
| 7 |
from datetime import datetime
|
| 8 |
import sqlite3
|
| 9 |
import threading
|
| 10 |
+
import hopsworks
|
| 11 |
+
import pandas as pd
|
| 12 |
+
import os
|
| 13 |
+
from dotenv import load_dotenv
|
| 14 |
+
|
| 15 |
+
load_dotenv()
|
| 16 |
|
| 17 |
class Database:
|
| 18 |
+
def __init__(self):
|
| 19 |
+
# Initialize Hopsworks
|
| 20 |
+
project = "orestavf"
|
| 21 |
+
api_key = os.getenv("HOPSWORKS_API_KEY")
|
| 22 |
+
self.project = hopsworks.login(project=project, api_key_value=api_key)
|
| 23 |
+
self.fs = self.project.get_feature_store()
|
| 24 |
+
self.feedback_fg = self.fs.get_or_create_feature_group(
|
| 25 |
+
name="job_feedback",
|
| 26 |
+
version=1,
|
| 27 |
+
primary_key=["job_id"],
|
| 28 |
+
description="Feature group for storing user feedback on job matches.",
|
| 29 |
+
online_enabled=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
)
|
| 31 |
+
|
| 32 |
+
def save_feedback(self, job_id: str, resume_text: str, headline: str,
|
| 33 |
+
occupation: str, description: str, is_relevant: bool):
|
| 34 |
+
# Prepare feedback data as a pandas DataFrame
|
| 35 |
+
feedback_data = pd.DataFrame([{
|
| 36 |
+
"job_id": job_id,
|
| 37 |
+
"resume_text": resume_text,
|
| 38 |
+
"job_headline": headline,
|
| 39 |
+
"job_occupation": occupation,
|
| 40 |
+
"job_description": description,
|
| 41 |
+
"is_relevant": is_relevant,
|
| 42 |
+
#"timestamp": datetime.now()
|
| 43 |
+
}])
|
| 44 |
+
|
| 45 |
+
self.feedback_fg.insert(feedback_data)
|
| 46 |
+
print(f"Feedback saved to Hopsworks for job ID: {job_id}")
|
|
|
|
|
|
|
| 47 |
|
| 48 |
def extract_text(file) -> Optional[str]:
|
| 49 |
"""Extract text from uploaded resume file"""
|
|
|
|
| 114 |
try:
|
| 115 |
# Find the job in current results by Pinecone ID
|
| 116 |
job = next((job for job in self.current_results if job['id'] == pinecone_id), None)
|
| 117 |
+
|
| 118 |
if not job:
|
| 119 |
return "Error: Job not found"
|
| 120 |
+
|
| 121 |
metadata = job['metadata']
|
| 122 |
+
|
| 123 |
self.db.save_feedback(
|
| 124 |
job_id=pinecone_id, # Use Pinecone's ID
|
| 125 |
resume_text=self.current_resume_text,
|
|
|
|
| 128 |
description=metadata['description'],
|
| 129 |
is_relevant=is_relevant
|
| 130 |
)
|
| 131 |
+
return f"\u2713 Feedback saved for '{metadata['headline']}'"
|
| 132 |
except Exception as e:
|
| 133 |
return f"Error saving feedback: {str(e)}"
|
| 134 |
|
| 135 |
+
|
| 136 |
def create_interface():
|
| 137 |
matcher = JobMatcher()
|
| 138 |
|
|
|
|
| 252 |
|
| 253 |
if __name__ == "__main__":
|
| 254 |
interface = create_interface()
|
| 255 |
+
interface.launch(debug=True)
|
modeltrain.py
DELETED
|
@@ -1,102 +0,0 @@
|
|
| 1 |
-
#!/usr/bin/env python3
|
| 2 |
-
|
| 3 |
-
import os
|
| 4 |
-
from torch.utils.data import DataLoader
|
| 5 |
-
from sentence_transformers import SentenceTransformer, InputExample, losses
|
| 6 |
-
# If you want to push to the HF Hub/Spaces programmatically:
|
| 7 |
-
# pip install huggingface_hub
|
| 8 |
-
# from huggingface_hub import HfApi, HfFolder
|
| 9 |
-
|
| 10 |
-
def main():
|
| 11 |
-
#--------------------------------------------------------------------------
|
| 12 |
-
# 1. (Optional) Setup your Hugging Face auth
|
| 13 |
-
#--------------------------------------------------------------------------
|
| 14 |
-
# If you need to log into your HF account, you can do:
|
| 15 |
-
# hf_token = os.getenv("HF_TOKEN") # or read from a config file
|
| 16 |
-
# HfFolder.save_token(hf_token)
|
| 17 |
-
# api = HfApi()
|
| 18 |
-
#
|
| 19 |
-
# Then set something like:
|
| 20 |
-
# repo_id = "KolumbusLindh/my-weekly-model"
|
| 21 |
-
#
|
| 22 |
-
# Alternatively, you can push manually later via huggingface-cli.
|
| 23 |
-
|
| 24 |
-
#--------------------------------------------------------------------------
|
| 25 |
-
# 2. Placeholder training data
|
| 26 |
-
#--------------------------------------------------------------------------
|
| 27 |
-
# Suppose each tuple is: (CV_text, liked_job_text, disliked_job_text).
|
| 28 |
-
# In a real scenario, you'd gather user feedback from your database.
|
| 29 |
-
train_data = [
|
| 30 |
-
("My CV #1", "Job #1 that user liked", "Job #1 that user disliked"),
|
| 31 |
-
("My CV #2", "Job #2 that user liked", "Job #2 that user disliked"),
|
| 32 |
-
# ...
|
| 33 |
-
]
|
| 34 |
-
|
| 35 |
-
#--------------------------------------------------------------------------
|
| 36 |
-
# 3. Convert data into Sentence Transformers InputExamples
|
| 37 |
-
#--------------------------------------------------------------------------
|
| 38 |
-
train_examples = []
|
| 39 |
-
for (cv_text, liked_job_text, disliked_job_text) in train_data:
|
| 40 |
-
example = InputExample(
|
| 41 |
-
texts=[cv_text, liked_job_text, disliked_job_text]
|
| 42 |
-
# TripletLoss expects exactly 3 texts: anchor, positive, negative
|
| 43 |
-
)
|
| 44 |
-
train_examples.append(example)
|
| 45 |
-
|
| 46 |
-
#--------------------------------------------------------------------------
|
| 47 |
-
# 4. Load the base model
|
| 48 |
-
#--------------------------------------------------------------------------
|
| 49 |
-
model_name = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
|
| 50 |
-
model = SentenceTransformer(model_name)
|
| 51 |
-
|
| 52 |
-
#--------------------------------------------------------------------------
|
| 53 |
-
# 5. Prepare DataLoader & define the Triplet Loss
|
| 54 |
-
#--------------------------------------------------------------------------
|
| 55 |
-
# A typical margin is 0.5–1.0. Feel free to adjust it.
|
| 56 |
-
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=8)
|
| 57 |
-
train_loss = losses.TripletLoss(
|
| 58 |
-
model=model,
|
| 59 |
-
distance_metric=losses.TripletDistanceMetric.COSINE,
|
| 60 |
-
margin=0.5
|
| 61 |
-
)
|
| 62 |
-
|
| 63 |
-
#--------------------------------------------------------------------------
|
| 64 |
-
# 6. Fine-tune (fit) the model
|
| 65 |
-
#--------------------------------------------------------------------------
|
| 66 |
-
# Just 1 epoch here for demo. In practice, tune #epochs/batch_size, etc.
|
| 67 |
-
num_epochs = 1
|
| 68 |
-
warmup_steps = int(len(train_dataloader) * num_epochs * 0.1) # ~10% warmup
|
| 69 |
-
|
| 70 |
-
model.fit(
|
| 71 |
-
train_objectives=[(train_dataloader, train_loss)],
|
| 72 |
-
epochs=num_epochs,
|
| 73 |
-
warmup_steps=warmup_steps,
|
| 74 |
-
show_progress_bar=True
|
| 75 |
-
)
|
| 76 |
-
|
| 77 |
-
#--------------------------------------------------------------------------
|
| 78 |
-
# 7. Save model locally
|
| 79 |
-
#--------------------------------------------------------------------------
|
| 80 |
-
local_output_path = "my_finetuned_model"
|
| 81 |
-
model.save(local_output_path)
|
| 82 |
-
print(f"Model fine-tuned and saved locally to: {local_output_path}")
|
| 83 |
-
|
| 84 |
-
#--------------------------------------------------------------------------
|
| 85 |
-
# 8. (Optional) Push to your Hugging Face Space
|
| 86 |
-
#--------------------------------------------------------------------------
|
| 87 |
-
# If you want to push automatically:
|
| 88 |
-
#
|
| 89 |
-
# model.push_to_hub(repo_id=repo_id, commit_message="Weekly model update")
|
| 90 |
-
#
|
| 91 |
-
# Or if you have a Space at e.g. https://huggingface.co/spaces/KolumbusLindh/<some-name>,
|
| 92 |
-
# you’d create a repo on HF, then push to that repo. Typically one uses
|
| 93 |
-
# huggingface-cli or the huggingface_hub methods for that:
|
| 94 |
-
#
|
| 95 |
-
# api.create_repo(repo_id=repo_id, repo_type="model", private=False)
|
| 96 |
-
# model.push_to_hub(repo_id=repo_id)
|
| 97 |
-
#
|
| 98 |
-
# # If it's a Space, you might need to store your model in the "models" folder
|
| 99 |
-
# # or however your Gradio app is set up to load it.
|
| 100 |
-
|
| 101 |
-
if __name__ == "__main__":
|
| 102 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pinecone_handler.py
CHANGED
|
@@ -52,7 +52,8 @@ class PineconeHandler:
|
|
| 52 |
self.index = self.pc.Index(PINECONE_INDEX_NAME)
|
| 53 |
|
| 54 |
#self.model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 55 |
-
self.model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
|
|
|
| 56 |
log.info(f"Initialized connection to Pinecone index '{PINECONE_INDEX_NAME}'")
|
| 57 |
|
| 58 |
def _create_embedding(self, ad: Dict[str, Any]) -> List[float]:
|
|
|
|
| 52 |
self.index = self.pc.Index(PINECONE_INDEX_NAME)
|
| 53 |
|
| 54 |
#self.model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 55 |
+
#self.model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
| 56 |
+
self.model = SentenceTransformer('forestav/job_matching_sentence_transformer')
|
| 57 |
log.info(f"Initialized connection to Pinecone index '{PINECONE_INDEX_NAME}'")
|
| 58 |
|
| 59 |
def _create_embedding(self, ad: Dict[str, Any]) -> List[float]:
|
settings.py
CHANGED
|
@@ -2,7 +2,8 @@ import logging
|
|
| 2 |
|
| 3 |
PINECONE_ENVIRONMENT = "gcp-starter"
|
| 4 |
#PINECONE_INDEX_NAME = "jobads-index"
|
| 5 |
-
PINECONE_INDEX_NAME = "jobsai-multilingual-small"
|
|
|
|
| 6 |
|
| 7 |
DB_TABLE_NAME = 'jobads'
|
| 8 |
DB_FILE_NAME = 'jobads_database_20220127.db'
|
|
|
|
| 2 |
|
| 3 |
PINECONE_ENVIRONMENT = "gcp-starter"
|
| 4 |
#PINECONE_INDEX_NAME = "jobads-index"
|
| 5 |
+
#PINECONE_INDEX_NAME = "jobsai-multilingual-small"
|
| 6 |
+
PINECONE_INDEX_NAME = "jobads-finetuned-small"
|
| 7 |
|
| 8 |
DB_TABLE_NAME = 'jobads'
|
| 9 |
DB_FILE_NAME = 'jobads_database_20220127.db'
|
app.py → streamlit_app.py
RENAMED
|
File without changes
|
training_pipeline.ipynb
ADDED
|
@@ -0,0 +1,641 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 23,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import hopsworks\n",
|
| 10 |
+
"from sentence_transformers import SentenceTransformer, InputExample, losses\n",
|
| 11 |
+
"from torch.utils.data import DataLoader\n",
|
| 12 |
+
"from sklearn.model_selection import train_test_split\n",
|
| 13 |
+
"from dotenv import load_dotenv\n",
|
| 14 |
+
"import os"
|
| 15 |
+
]
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "code",
|
| 19 |
+
"execution_count": 24,
|
| 20 |
+
"metadata": {},
|
| 21 |
+
"outputs": [
|
| 22 |
+
{
|
| 23 |
+
"name": "stdout",
|
| 24 |
+
"output_type": "stream",
|
| 25 |
+
"text": [
|
| 26 |
+
"2025-01-08 19:52:22,417 INFO: Closing external client and cleaning up certificates.\n",
|
| 27 |
+
"Connection closed.\n",
|
| 28 |
+
"2025-01-08 19:52:22,421 INFO: Initializing external client\n",
|
| 29 |
+
"2025-01-08 19:52:22,421 INFO: Base URL: https://c.app.hopsworks.ai:443\n",
|
| 30 |
+
"2025-01-08 19:52:23,548 INFO: Python Engine initialized.\n",
|
| 31 |
+
"\n",
|
| 32 |
+
"Logged in to project, explore it here https://c.app.hopsworks.ai:443/p/1158296\n"
|
| 33 |
+
]
|
| 34 |
+
}
|
| 35 |
+
],
|
| 36 |
+
"source": [
|
| 37 |
+
"# Initialize Hopsworks connection\n",
|
| 38 |
+
"load_dotenv()\n",
|
| 39 |
+
"\n",
|
| 40 |
+
"api_key = os.getenv(\"HOPSWORKS_API_KEY\")\n",
|
| 41 |
+
"project = hopsworks.login(project=\"orestavf\", api_key_value=api_key)\n",
|
| 42 |
+
"fs = project.get_feature_store()\n"
|
| 43 |
+
]
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"cell_type": "code",
|
| 47 |
+
"execution_count": 3,
|
| 48 |
+
"metadata": {},
|
| 49 |
+
"outputs": [
|
| 50 |
+
{
|
| 51 |
+
"name": "stdout",
|
| 52 |
+
"output_type": "stream",
|
| 53 |
+
"text": [
|
| 54 |
+
"Finished: Reading data from Hopsworks, using Hopsworks Feature Query Service (0.84s) \n"
|
| 55 |
+
]
|
| 56 |
+
}
|
| 57 |
+
],
|
| 58 |
+
"source": [
|
| 59 |
+
"# Load preprocessed data\n",
|
| 60 |
+
"feedback_fg = fs.get_feature_group(name=\"job_feedback\", version=1)\n",
|
| 61 |
+
"feedback_df = feedback_fg.read()"
|
| 62 |
+
]
|
| 63 |
+
},
|
| 64 |
+
{
|
| 65 |
+
"cell_type": "code",
|
| 66 |
+
"execution_count": 4,
|
| 67 |
+
"metadata": {},
|
| 68 |
+
"outputs": [],
|
| 69 |
+
"source": [
|
| 70 |
+
"# Split into train and validation sets\n",
|
| 71 |
+
"train_df, val_df = train_test_split(feedback_df, test_size=0.2, random_state=42)"
|
| 72 |
+
]
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"cell_type": "code",
|
| 76 |
+
"execution_count": 5,
|
| 77 |
+
"metadata": {},
|
| 78 |
+
"outputs": [],
|
| 79 |
+
"source": [
|
| 80 |
+
"# Prepare data for SentenceTransformer\n",
|
| 81 |
+
"def prepare_examples(df):\n",
|
| 82 |
+
" examples = []\n",
|
| 83 |
+
" for _, row in df.iterrows():\n",
|
| 84 |
+
" examples.append(\n",
|
| 85 |
+
" InputExample(\n",
|
| 86 |
+
" texts=[row[\"resume_text\"], row[\"job_description\"]],\n",
|
| 87 |
+
" label=float(row[\"is_relevant\"]) # Convert to float for loss calculation\n",
|
| 88 |
+
" )\n",
|
| 89 |
+
" )\n",
|
| 90 |
+
" return examples"
|
| 91 |
+
]
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"cell_type": "code",
|
| 95 |
+
"execution_count": 6,
|
| 96 |
+
"metadata": {},
|
| 97 |
+
"outputs": [],
|
| 98 |
+
"source": [
|
| 99 |
+
"train_examples = prepare_examples(train_df)\n",
|
| 100 |
+
"val_examples = prepare_examples(val_df)"
|
| 101 |
+
]
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"cell_type": "code",
|
| 105 |
+
"execution_count": 7,
|
| 106 |
+
"metadata": {},
|
| 107 |
+
"outputs": [
|
| 108 |
+
{
|
| 109 |
+
"name": "stdout",
|
| 110 |
+
"output_type": "stream",
|
| 111 |
+
"text": [
|
| 112 |
+
"2025-01-08 19:25:05,476 INFO: Use pytorch device_name: cpu\n",
|
| 113 |
+
"2025-01-08 19:25:05,477 INFO: Load pretrained SentenceTransformer: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2\n"
|
| 114 |
+
]
|
| 115 |
+
}
|
| 116 |
+
],
|
| 117 |
+
"source": [
|
| 118 |
+
"# Load pretrained SentenceTransformer\n",
|
| 119 |
+
"model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')"
|
| 120 |
+
]
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"cell_type": "code",
|
| 124 |
+
"execution_count": 8,
|
| 125 |
+
"metadata": {},
|
| 126 |
+
"outputs": [],
|
| 127 |
+
"source": [
|
| 128 |
+
"# Define DataLoader\n",
|
| 129 |
+
"train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=16)\n",
|
| 130 |
+
"val_dataloader = DataLoader(val_examples, shuffle=False, batch_size=16)"
|
| 131 |
+
]
|
| 132 |
+
},
|
| 133 |
+
{
|
| 134 |
+
"cell_type": "code",
|
| 135 |
+
"execution_count": 9,
|
| 136 |
+
"metadata": {},
|
| 137 |
+
"outputs": [],
|
| 138 |
+
"source": [
|
| 139 |
+
"# Define loss\n",
|
| 140 |
+
"train_loss = losses.CosineSimilarityLoss(model)"
|
| 141 |
+
]
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"cell_type": "code",
|
| 145 |
+
"execution_count": 10,
|
| 146 |
+
"metadata": {},
|
| 147 |
+
"outputs": [],
|
| 148 |
+
"source": [
|
| 149 |
+
"# Configure training\n",
|
| 150 |
+
"num_epochs = 3\n",
|
| 151 |
+
"warmup_steps = int(len(train_dataloader) * num_epochs * 0.1) # 10% of training as warmup"
|
| 152 |
+
]
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"cell_type": "code",
|
| 156 |
+
"execution_count": 11,
|
| 157 |
+
"metadata": {},
|
| 158 |
+
"outputs": [
|
| 159 |
+
{
|
| 160 |
+
"data": {
|
| 161 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 162 |
+
"model_id": "65a11878fdad456a94ae2e4d44e403a3",
|
| 163 |
+
"version_major": 2,
|
| 164 |
+
"version_minor": 0
|
| 165 |
+
},
|
| 166 |
+
"text/plain": [
|
| 167 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
| 168 |
+
]
|
| 169 |
+
},
|
| 170 |
+
"metadata": {},
|
| 171 |
+
"output_type": "display_data"
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"name": "stdout",
|
| 175 |
+
"output_type": "stream",
|
| 176 |
+
"text": [
|
| 177 |
+
"{'train_runtime': 5.2094, 'train_samples_per_second': 2.879, 'train_steps_per_second': 0.576, 'train_loss': 0.27454523245493573, 'epoch': 3.0}\n",
|
| 178 |
+
"2025-01-08 19:25:14,162 INFO: Save model to ./finetuned_model\n"
|
| 179 |
+
]
|
| 180 |
+
},
|
| 181 |
+
{
|
| 182 |
+
"data": {
|
| 183 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 184 |
+
"model_id": "7bc7a5e2e56e4abe8bbf47e5ed251d6a",
|
| 185 |
+
"version_major": 2,
|
| 186 |
+
"version_minor": 0
|
| 187 |
+
},
|
| 188 |
+
"text/plain": [
|
| 189 |
+
"Computing widget examples: 0%| | 0/1 [00:00<?, ?example/s]"
|
| 190 |
+
]
|
| 191 |
+
},
|
| 192 |
+
"metadata": {},
|
| 193 |
+
"output_type": "display_data"
|
| 194 |
+
},
|
| 195 |
+
{
|
| 196 |
+
"data": {
|
| 197 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 198 |
+
"model_id": "a4218c62846f43c7be217513f8fd86de",
|
| 199 |
+
"version_major": 2,
|
| 200 |
+
"version_minor": 0
|
| 201 |
+
},
|
| 202 |
+
"text/plain": [
|
| 203 |
+
"Computing widget examples: 0%| | 0/1 [00:00<?, ?example/s]"
|
| 204 |
+
]
|
| 205 |
+
},
|
| 206 |
+
"metadata": {},
|
| 207 |
+
"output_type": "display_data"
|
| 208 |
+
}
|
| 209 |
+
],
|
| 210 |
+
"source": [
|
| 211 |
+
"# Train the model\n",
|
| 212 |
+
"model.fit(\n",
|
| 213 |
+
" train_objectives=[(train_dataloader, train_loss)],\n",
|
| 214 |
+
" evaluator=None, # Add an evaluator if needed\n",
|
| 215 |
+
" epochs=num_epochs,\n",
|
| 216 |
+
" warmup_steps=warmup_steps,\n",
|
| 217 |
+
" output_path=\"./finetuned_model\"\n",
|
| 218 |
+
")"
|
| 219 |
+
]
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"cell_type": "code",
|
| 223 |
+
"execution_count": null,
|
| 224 |
+
"metadata": {},
|
| 225 |
+
"outputs": [],
|
| 226 |
+
"source": [
|
| 227 |
+
"# Save the trained model locally\n",
|
| 228 |
+
"#model.save(\"./finetuned_model\")\n",
|
| 229 |
+
"#print(\"Model finetuned and saved locally!\")"
|
| 230 |
+
]
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"cell_type": "code",
|
| 234 |
+
"execution_count": 12,
|
| 235 |
+
"metadata": {},
|
| 236 |
+
"outputs": [],
|
| 237 |
+
"source": [
|
| 238 |
+
"from hsml.schema import Schema\n",
|
| 239 |
+
"from hsml.model_schema import ModelSchema"
|
| 240 |
+
]
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"cell_type": "code",
|
| 244 |
+
"execution_count": 13,
|
| 245 |
+
"metadata": {},
|
| 246 |
+
"outputs": [],
|
| 247 |
+
"source": [
|
| 248 |
+
"# Define the Model Schema\n",
|
| 249 |
+
"X_train_sample = train_df[[\"resume_text\", \"job_description\"]].sample(1).values # Input example\n",
|
| 250 |
+
"y_train_sample = train_df[\"is_relevant\"].sample(1).values # Output example"
|
| 251 |
+
]
|
| 252 |
+
},
|
| 253 |
+
{
|
| 254 |
+
"cell_type": "code",
|
| 255 |
+
"execution_count": 14,
|
| 256 |
+
"metadata": {},
|
| 257 |
+
"outputs": [],
|
| 258 |
+
"source": [
|
| 259 |
+
"input_schema = Schema(X_train_sample)\n",
|
| 260 |
+
"output_schema = Schema(y_train_sample)\n",
|
| 261 |
+
"model_schema = ModelSchema(input_schema=input_schema, output_schema=output_schema)"
|
| 262 |
+
]
|
| 263 |
+
},
|
| 264 |
+
{
|
| 265 |
+
"cell_type": "code",
|
| 266 |
+
"execution_count": 15,
|
| 267 |
+
"metadata": {},
|
| 268 |
+
"outputs": [],
|
| 269 |
+
"source": [
|
| 270 |
+
"# Get Model Registry\n",
|
| 271 |
+
"mr = project.get_model_registry()"
|
| 272 |
+
]
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"cell_type": "code",
|
| 276 |
+
"execution_count": 19,
|
| 277 |
+
"metadata": {},
|
| 278 |
+
"outputs": [],
|
| 279 |
+
"source": [
|
| 280 |
+
"# Register the model in the Model Registry\n",
|
| 281 |
+
"job_matching_model = mr.python.create_model(\n",
|
| 282 |
+
" name=\"job_matching_sentence_transformer\",\n",
|
| 283 |
+
" #metrics=metrics,\n",
|
| 284 |
+
" model_schema=model_schema,\n",
|
| 285 |
+
" input_example=X_train_sample,\n",
|
| 286 |
+
" description=\"Finetuned SentenceTransformer for job matching\",\n",
|
| 287 |
+
" version=1\n",
|
| 288 |
+
")"
|
| 289 |
+
]
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"cell_type": "code",
|
| 293 |
+
"execution_count": 20,
|
| 294 |
+
"metadata": {},
|
| 295 |
+
"outputs": [
|
| 296 |
+
{
|
| 297 |
+
"data": {
|
| 298 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 299 |
+
"model_id": "78d7674e395848acb4586dd4dff1fee8",
|
| 300 |
+
"version_major": 2,
|
| 301 |
+
"version_minor": 0
|
| 302 |
+
},
|
| 303 |
+
"text/plain": [
|
| 304 |
+
" 0%| | 0/6 [00:00<?, ?it/s]"
|
| 305 |
+
]
|
| 306 |
+
},
|
| 307 |
+
"metadata": {},
|
| 308 |
+
"output_type": "display_data"
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"data": {
|
| 312 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 313 |
+
"model_id": "ff6231d9469840229d992abb28a5740b",
|
| 314 |
+
"version_major": 2,
|
| 315 |
+
"version_minor": 0
|
| 316 |
+
},
|
| 317 |
+
"text/plain": [
|
| 318 |
+
"Uploading: 0.000%| | 0/727 elapsed<00:00 remaining<?"
|
| 319 |
+
]
|
| 320 |
+
},
|
| 321 |
+
"metadata": {},
|
| 322 |
+
"output_type": "display_data"
|
| 323 |
+
},
|
| 324 |
+
{
|
| 325 |
+
"data": {
|
| 326 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 327 |
+
"model_id": "53650ea045a24041a44626336d9a9c9b",
|
| 328 |
+
"version_major": 2,
|
| 329 |
+
"version_minor": 0
|
| 330 |
+
},
|
| 331 |
+
"text/plain": [
|
| 332 |
+
"Uploading: 0.000%| | 0/212 elapsed<00:00 remaining<?"
|
| 333 |
+
]
|
| 334 |
+
},
|
| 335 |
+
"metadata": {},
|
| 336 |
+
"output_type": "display_data"
|
| 337 |
+
},
|
| 338 |
+
{
|
| 339 |
+
"data": {
|
| 340 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 341 |
+
"model_id": "21e688c69c7a46a4bb7485d1d088c887",
|
| 342 |
+
"version_major": 2,
|
| 343 |
+
"version_minor": 0
|
| 344 |
+
},
|
| 345 |
+
"text/plain": [
|
| 346 |
+
"Uploading: 0.000%| | 0/470637416 elapsed<00:00 remaining<?"
|
| 347 |
+
]
|
| 348 |
+
},
|
| 349 |
+
"metadata": {},
|
| 350 |
+
"output_type": "display_data"
|
| 351 |
+
},
|
| 352 |
+
{
|
| 353 |
+
"data": {
|
| 354 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 355 |
+
"model_id": "c68dc00bc2ae4804b73780d0f23e21ba",
|
| 356 |
+
"version_major": 2,
|
| 357 |
+
"version_minor": 0
|
| 358 |
+
},
|
| 359 |
+
"text/plain": [
|
| 360 |
+
"Uploading: 0.000%| | 0/242 elapsed<00:00 remaining<?"
|
| 361 |
+
]
|
| 362 |
+
},
|
| 363 |
+
"metadata": {},
|
| 364 |
+
"output_type": "display_data"
|
| 365 |
+
},
|
| 366 |
+
{
|
| 367 |
+
"data": {
|
| 368 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 369 |
+
"model_id": "bb846d6b71b746749d59c0bf25779f61",
|
| 370 |
+
"version_major": 2,
|
| 371 |
+
"version_minor": 0
|
| 372 |
+
},
|
| 373 |
+
"text/plain": [
|
| 374 |
+
"Uploading: 0.000%| | 0/21034 elapsed<00:00 remaining<?"
|
| 375 |
+
]
|
| 376 |
+
},
|
| 377 |
+
"metadata": {},
|
| 378 |
+
"output_type": "display_data"
|
| 379 |
+
},
|
| 380 |
+
{
|
| 381 |
+
"data": {
|
| 382 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 383 |
+
"model_id": "afda6046a57c42dca546be6defd13f11",
|
| 384 |
+
"version_major": 2,
|
| 385 |
+
"version_minor": 0
|
| 386 |
+
},
|
| 387 |
+
"text/plain": [
|
| 388 |
+
"Uploading: 0.000%| | 0/56 elapsed<00:00 remaining<?"
|
| 389 |
+
]
|
| 390 |
+
},
|
| 391 |
+
"metadata": {},
|
| 392 |
+
"output_type": "display_data"
|
| 393 |
+
},
|
| 394 |
+
{
|
| 395 |
+
"data": {
|
| 396 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 397 |
+
"model_id": "df4c630a40954b9784a2a631be4ed4e3",
|
| 398 |
+
"version_major": 2,
|
| 399 |
+
"version_minor": 0
|
| 400 |
+
},
|
| 401 |
+
"text/plain": [
|
| 402 |
+
"Uploading: 0.000%| | 0/1015 elapsed<00:00 remaining<?"
|
| 403 |
+
]
|
| 404 |
+
},
|
| 405 |
+
"metadata": {},
|
| 406 |
+
"output_type": "display_data"
|
| 407 |
+
},
|
| 408 |
+
{
|
| 409 |
+
"data": {
|
| 410 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 411 |
+
"model_id": "4c6430695b7e43c0815fe278328e0448",
|
| 412 |
+
"version_major": 2,
|
| 413 |
+
"version_minor": 0
|
| 414 |
+
},
|
| 415 |
+
"text/plain": [
|
| 416 |
+
"Uploading: 0.000%| | 0/17082987 elapsed<00:00 remaining<?"
|
| 417 |
+
]
|
| 418 |
+
},
|
| 419 |
+
"metadata": {},
|
| 420 |
+
"output_type": "display_data"
|
| 421 |
+
},
|
| 422 |
+
{
|
| 423 |
+
"data": {
|
| 424 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 425 |
+
"model_id": "a1aa72dd0b344a26b22d8839aa12c4fb",
|
| 426 |
+
"version_major": 2,
|
| 427 |
+
"version_minor": 0
|
| 428 |
+
},
|
| 429 |
+
"text/plain": [
|
| 430 |
+
"Uploading: 0.000%| | 0/1512 elapsed<00:00 remaining<?"
|
| 431 |
+
]
|
| 432 |
+
},
|
| 433 |
+
"metadata": {},
|
| 434 |
+
"output_type": "display_data"
|
| 435 |
+
},
|
| 436 |
+
{
|
| 437 |
+
"data": {
|
| 438 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 439 |
+
"model_id": "2b599ffc95d4499b80673d873b6dfe7a",
|
| 440 |
+
"version_major": 2,
|
| 441 |
+
"version_minor": 0
|
| 442 |
+
},
|
| 443 |
+
"text/plain": [
|
| 444 |
+
"Uploading: 0.000%| | 0/14763260 elapsed<00:00 remaining<?"
|
| 445 |
+
]
|
| 446 |
+
},
|
| 447 |
+
"metadata": {},
|
| 448 |
+
"output_type": "display_data"
|
| 449 |
+
},
|
| 450 |
+
{
|
| 451 |
+
"data": {
|
| 452 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 453 |
+
"model_id": "fa11d5018fcb4ab094dac6c27128bcf5",
|
| 454 |
+
"version_major": 2,
|
| 455 |
+
"version_minor": 0
|
| 456 |
+
},
|
| 457 |
+
"text/plain": [
|
| 458 |
+
"Uploading: 0.000%| | 0/305 elapsed<00:00 remaining<?"
|
| 459 |
+
]
|
| 460 |
+
},
|
| 461 |
+
"metadata": {},
|
| 462 |
+
"output_type": "display_data"
|
| 463 |
+
},
|
| 464 |
+
{
|
| 465 |
+
"data": {
|
| 466 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 467 |
+
"model_id": "7e37354a957d45b88b7a25007b3c7889",
|
| 468 |
+
"version_major": 2,
|
| 469 |
+
"version_minor": 0
|
| 470 |
+
},
|
| 471 |
+
"text/plain": [
|
| 472 |
+
"Uploading: 0.000%| | 0/6678 elapsed<00:00 remaining<?"
|
| 473 |
+
]
|
| 474 |
+
},
|
| 475 |
+
"metadata": {},
|
| 476 |
+
"output_type": "display_data"
|
| 477 |
+
},
|
| 478 |
+
{
|
| 479 |
+
"data": {
|
| 480 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 481 |
+
"model_id": "f4e0c3e6d64b457bb01e5a0ac2162433",
|
| 482 |
+
"version_major": 2,
|
| 483 |
+
"version_minor": 0
|
| 484 |
+
},
|
| 485 |
+
"text/plain": [
|
| 486 |
+
"Uploading: 0.000%| | 0/216 elapsed<00:00 remaining<?"
|
| 487 |
+
]
|
| 488 |
+
},
|
| 489 |
+
"metadata": {},
|
| 490 |
+
"output_type": "display_data"
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"name": "stdout",
|
| 494 |
+
"output_type": "stream",
|
| 495 |
+
"text": [
|
| 496 |
+
"Model created, explore it at https://c.app.hopsworks.ai:443/p/1158296/models/job_matching_sentence_transformer/1\n",
|
| 497 |
+
"Model registered in Hopsworks Model Registry!\n"
|
| 498 |
+
]
|
| 499 |
+
}
|
| 500 |
+
],
|
| 501 |
+
"source": [
|
| 502 |
+
"# Save model artifacts to the Model Registry\n",
|
| 503 |
+
"job_matching_model.save(\"./finetuned_model\")\n",
|
| 504 |
+
"print(\"Model registered in Hopsworks Model Registry!\")"
|
| 505 |
+
]
|
| 506 |
+
},
|
| 507 |
+
{
|
| 508 |
+
"cell_type": "code",
|
| 509 |
+
"execution_count": 22,
|
| 510 |
+
"metadata": {},
|
| 511 |
+
"outputs": [
|
| 512 |
+
{
|
| 513 |
+
"name": "stdout",
|
| 514 |
+
"output_type": "stream",
|
| 515 |
+
"text": [
|
| 516 |
+
"2025-01-08 19:44:05,458 INFO: Save model to C:\\Users\\Filip\\AppData\\Local\\Temp\\tmpa217ndkp\n"
|
| 517 |
+
]
|
| 518 |
+
},
|
| 519 |
+
{
|
| 520 |
+
"data": {
|
| 521 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 522 |
+
"model_id": "05f6bc89a66a4202b9f3b4b4fadee783",
|
| 523 |
+
"version_major": 2,
|
| 524 |
+
"version_minor": 0
|
| 525 |
+
},
|
| 526 |
+
"text/plain": [
|
| 527 |
+
"Computing widget examples: 0%| | 0/1 [00:00<?, ?example/s]"
|
| 528 |
+
]
|
| 529 |
+
},
|
| 530 |
+
"metadata": {},
|
| 531 |
+
"output_type": "display_data"
|
| 532 |
+
},
|
| 533 |
+
{
|
| 534 |
+
"data": {
|
| 535 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 536 |
+
"model_id": "c1688de9db8d46b6ba410bcdcff839fd",
|
| 537 |
+
"version_major": 2,
|
| 538 |
+
"version_minor": 0
|
| 539 |
+
},
|
| 540 |
+
"text/plain": [
|
| 541 |
+
"Computing widget examples: 0%| | 0/1 [00:00<?, ?example/s]"
|
| 542 |
+
]
|
| 543 |
+
},
|
| 544 |
+
"metadata": {},
|
| 545 |
+
"output_type": "display_data"
|
| 546 |
+
},
|
| 547 |
+
{
|
| 548 |
+
"data": {
|
| 549 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 550 |
+
"model_id": "c496a24b0d4044ffbbd9278a9f56996d",
|
| 551 |
+
"version_major": 2,
|
| 552 |
+
"version_minor": 0
|
| 553 |
+
},
|
| 554 |
+
"text/plain": [
|
| 555 |
+
"unigram.json: 0%| | 0.00/14.8M [00:00<?, ?B/s]"
|
| 556 |
+
]
|
| 557 |
+
},
|
| 558 |
+
"metadata": {},
|
| 559 |
+
"output_type": "display_data"
|
| 560 |
+
},
|
| 561 |
+
{
|
| 562 |
+
"data": {
|
| 563 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 564 |
+
"model_id": "d4f0e6b478aa4a8dad8c798761289a8f",
|
| 565 |
+
"version_major": 2,
|
| 566 |
+
"version_minor": 0
|
| 567 |
+
},
|
| 568 |
+
"text/plain": [
|
| 569 |
+
"model.safetensors: 0%| | 0.00/471M [00:00<?, ?B/s]"
|
| 570 |
+
]
|
| 571 |
+
},
|
| 572 |
+
"metadata": {},
|
| 573 |
+
"output_type": "display_data"
|
| 574 |
+
},
|
| 575 |
+
{
|
| 576 |
+
"data": {
|
| 577 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 578 |
+
"model_id": "e2a88564cf8b438bad836c593d4d78f6",
|
| 579 |
+
"version_major": 2,
|
| 580 |
+
"version_minor": 0
|
| 581 |
+
},
|
| 582 |
+
"text/plain": [
|
| 583 |
+
"Upload 3 LFS files: 0%| | 0/3 [00:00<?, ?it/s]"
|
| 584 |
+
]
|
| 585 |
+
},
|
| 586 |
+
"metadata": {},
|
| 587 |
+
"output_type": "display_data"
|
| 588 |
+
},
|
| 589 |
+
{
|
| 590 |
+
"data": {
|
| 591 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 592 |
+
"model_id": "b302ff2e4cf74982bccdcf9d3a221240",
|
| 593 |
+
"version_major": 2,
|
| 594 |
+
"version_minor": 0
|
| 595 |
+
},
|
| 596 |
+
"text/plain": [
|
| 597 |
+
"tokenizer.json: 0%| | 0.00/17.1M [00:00<?, ?B/s]"
|
| 598 |
+
]
|
| 599 |
+
},
|
| 600 |
+
"metadata": {},
|
| 601 |
+
"output_type": "display_data"
|
| 602 |
+
},
|
| 603 |
+
{
|
| 604 |
+
"data": {
|
| 605 |
+
"text/plain": [
|
| 606 |
+
"'https://huggingface.co/forestav/job_matching_sentence_transformer/commit/7168a70785fae3fee6f5576b40a7556072ba31a2'"
|
| 607 |
+
]
|
| 608 |
+
},
|
| 609 |
+
"execution_count": 22,
|
| 610 |
+
"metadata": {},
|
| 611 |
+
"output_type": "execute_result"
|
| 612 |
+
}
|
| 613 |
+
],
|
| 614 |
+
"source": [
|
| 615 |
+
"# Push the model to huggingface\n",
|
| 616 |
+
"model.push_to_hub(\"forestav/job_matching_sentence_transformer\")"
|
| 617 |
+
]
|
| 618 |
+
}
|
| 619 |
+
],
|
| 620 |
+
"metadata": {
|
| 621 |
+
"kernelspec": {
|
| 622 |
+
"display_name": "venv",
|
| 623 |
+
"language": "python",
|
| 624 |
+
"name": "python3"
|
| 625 |
+
},
|
| 626 |
+
"language_info": {
|
| 627 |
+
"codemirror_mode": {
|
| 628 |
+
"name": "ipython",
|
| 629 |
+
"version": 3
|
| 630 |
+
},
|
| 631 |
+
"file_extension": ".py",
|
| 632 |
+
"mimetype": "text/x-python",
|
| 633 |
+
"name": "python",
|
| 634 |
+
"nbconvert_exporter": "python",
|
| 635 |
+
"pygments_lexer": "ipython3",
|
| 636 |
+
"version": "3.12.2"
|
| 637 |
+
}
|
| 638 |
+
},
|
| 639 |
+
"nbformat": 4,
|
| 640 |
+
"nbformat_minor": 2
|
| 641 |
+
}
|