ford442 commited on
Commit
de99a86
·
verified ·
1 Parent(s): 5375665

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -58,8 +58,9 @@ torch_dtype = torch.bfloat16
58
 
59
  checkpoint = "microsoft/Phi-3.5-mini-instruct"
60
  #vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
61
- vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
62
  #vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
 
 
63
 
64
  pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16") #.to(torch.bfloat16)
65
  #pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
@@ -75,7 +76,7 @@ pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-me
75
  #pipe = torch.compile(pipe)
76
  # pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear")
77
 
78
- refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffusion-xl-refiner-1.0-bf16", vae=AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16"), requires_aesthetics_score=True).to(torch.bfloat16)
79
  #refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')
80
  refiner.scheduler=EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config)
81
  #refiner.enable_model_cpu_offload()
@@ -257,7 +258,7 @@ def infer(
257
  #upload_to_ftp(latent_path)
258
  #refiner.scheduler.set_timesteps(num_inference_steps,device)
259
  pipe.to(torch.device('cpu'))
260
- refiner.to(torch.device('cuda'))
261
  refine = refiner(
262
  prompt=f"{enhanced_prompt_2}, high quality masterpiece, complex details",
263
  negative_prompt = negative_prompt,
 
58
 
59
  checkpoint = "microsoft/Phi-3.5-mini-instruct"
60
  #vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
 
61
  #vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
62
+ #vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
63
+ vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False) #, device_map='cpu') #.to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
64
 
65
  pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16") #.to(torch.bfloat16)
66
  #pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
 
76
  #pipe = torch.compile(pipe)
77
  # pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear")
78
 
79
+ refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffusion-xl-refiner-1.0-bf16", vaeXL, requires_aesthetics_score=True) #.to(torch.bfloat16)
80
  #refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')
81
  refiner.scheduler=EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config)
82
  #refiner.enable_model_cpu_offload()
 
258
  #upload_to_ftp(latent_path)
259
  #refiner.scheduler.set_timesteps(num_inference_steps,device)
260
  pipe.to(torch.device('cpu'))
261
+ refiner.to(device=device, dtype=torch.bfloat16)
262
  refine = refiner(
263
  prompt=f"{enhanced_prompt_2}, high quality masterpiece, complex details",
264
  negative_prompt = negative_prompt,