Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -61,7 +61,7 @@ checkpoint = "microsoft/Phi-3.5-mini-instruct"
|
|
61 |
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
62 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
63 |
|
64 |
-
pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16")
|
65 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
|
66 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
|
67 |
#pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
|
@@ -117,7 +117,7 @@ def filter_text(text,phraseC):
|
|
117 |
MAX_SEED = np.iinfo(np.int32).max
|
118 |
MAX_IMAGE_SIZE = 4096
|
119 |
|
120 |
-
@spaces.GPU(duration=
|
121 |
def infer(
|
122 |
prompt,
|
123 |
negative_prompt,
|
@@ -132,7 +132,7 @@ def infer(
|
|
132 |
progress=gr.Progress(track_tqdm=True),
|
133 |
):
|
134 |
upscaler_2.to(torch.device('cpu'))
|
135 |
-
pipe.to(torch.
|
136 |
torch.set_float32_matmul_precision("highest")
|
137 |
seed = random.randint(0, MAX_SEED)
|
138 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
61 |
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
62 |
#vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16")
|
63 |
|
64 |
+
pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16") #.to(torch.bfloat16)
|
65 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16").to(torch.device("cuda:0"))
|
66 |
#pipe = StableDiffusion3Pipeline.from_pretrained("ford442/RealVis_Medium_1.0b_bf16", torch_dtype=torch.bfloat16)
|
67 |
#pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')
|
|
|
117 |
MAX_SEED = np.iinfo(np.int32).max
|
118 |
MAX_IMAGE_SIZE = 4096
|
119 |
|
120 |
+
@spaces.GPU(duration=90)
|
121 |
def infer(
|
122 |
prompt,
|
123 |
negative_prompt,
|
|
|
132 |
progress=gr.Progress(track_tqdm=True),
|
133 |
):
|
134 |
upscaler_2.to(torch.device('cpu'))
|
135 |
+
pipe.to(device=device, dtype=torch.bfloat16)
|
136 |
torch.set_float32_matmul_precision("highest")
|
137 |
seed = random.randint(0, MAX_SEED)
|
138 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|