File size: 11,143 Bytes
2fd5bd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b40745
 
2fd5bd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9353b81
2fd5bd1
9353b81
c35010f
2fd5bd1
 
 
 
 
9353b81
2fd5bd1
9353b81
2fd5bd1
9353b81
2fd5bd1
 
 
 
 
 
 
9353b81
2fd5bd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9353b81
2fd5bd1
 
 
 
 
 
 
 
 
 
 
 
c35010f
2fd5bd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b05ba5b
2fd5bd1
 
 
 
 
 
 
 
 
 
 
 
4bdb15e
9353b81
 
 
 
 
 
 
4bdb15e
2fd5bd1
 
89150fa
2fd5bd1
9353b81
 
 
 
 
 
 
 
 
 
 
 
2fd5bd1
 
 
 
 
 
 
 
 
 
 
 
 
 
9353b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fd5bd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9353b81
 
 
2fd5bd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import spaces
import gradio as gr
import numpy as np

#import tensorrt as trt

import random
import torch
from diffusers import StableDiffusion3Pipeline, AutoencoderKL, StableDiffusionXLImg2ImgPipeline, EDMEulerScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler 
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from threading import Thread
from transformers import pipeline
from transformers import T5Tokenizer, T5ForConditionalGeneration
import re
import paramiko
import urllib
import time
import os

FTP_HOST = "1ink.us"
FTP_USER = "ford442"
FTP_PASS = "GoogleBez12!"
FTP_DIR = "1ink.us/stable_diff/"  # Remote directory on FTP server

torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"

torch.set_float32_matmul_precision("highest")

hftoken = os.getenv("HF_AUTH_TOKEN") 

def upload_to_ftp(filename):
    try:
        transport = paramiko.Transport((FTP_HOST, 22))
        destination_path=FTP_DIR+filename
        transport.connect(username = FTP_USER, password = FTP_PASS)
        sftp = paramiko.SFTPClient.from_transport(transport)
        sftp.put(filename, destination_path)
        sftp.close()
        transport.close()
        print(f"Uploaded {filename} to FTP server")
    except Exception as e:
        print(f"FTP upload error: {e}")

device = torch.device("cuda")
torch_dtype = torch.bfloat16

checkpoint = "microsoft/Phi-3.5-mini-instruct"
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("ford442/sdxl-vae-bf16", torch_dtype=torch.bfloat16, device_map='balanced')

pipe = StableDiffusion3Pipeline.from_pretrained("ford442/stable-diffusion-3.5-medium-bf16", torch_dtype=torch.bfloat16, device_map='balanced')
#pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", token=hftoken, torch_dtype=torch.float32, device_map='balanced')

# pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")

#pipe.scheduler.config.requires_aesthetics_score = False
#pipe.enable_model_cpu_offload()
#pipe.to(device)
#pipe = torch.compile(pipe)
# pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config, beta_schedule="scaled_linear")

refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("ford442/stable-diffusion-xl-refiner-1.0-bf16", vae=vae, torch_dtype=torch.bfloat16, use_safetensors=True, requires_aesthetics_score=True, device_map='balanced')
#refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float32, requires_aesthetics_score=True, device_map='balanced')

#refiner.enable_model_cpu_offload()

#refiner.scheduler.config.requires_aesthetics_score=False
#refiner.to(device)
#refiner = torch.compile(refiner)
refiner.scheduler = EulerAncestralDiscreteScheduler.from_config(refiner.scheduler.config, beta_schedule="scaled_linear")

tokenizer = AutoTokenizer.from_pretrained(checkpoint, add_prefix_space=False, device_map='balanced')
tokenizer.tokenizer_legacy=False
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map='balanced')
#model = torch.compile(model)

def filter_text(text):
  """Filters out the text up to and including 'Rewritten Prompt:'."""
  pattern = r".*?Rewritten Prompt:\s*"  # Matches any characters up to 'Rewritten Prompt:'
  filtered_text = re.sub(pattern, "", text,flags=re.DOTALL)  # Removes the matched pattern from the text
  return filtered_text

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096

@spaces.GPU(duration=80)
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device='cuda').manual_seed(seed)

    system_prompt_rewrite = (
    "You are an AI assistant that rewrites image prompts to be more descriptive and detailed."
    )
    user_prompt_rewrite = (
    "Rewrite this prompt to be more descriptive and detailed: "
    )
    input_text = f"{system_prompt_rewrite} {user_prompt_rewrite} {prompt}"
    print("-- got prompt --")
    # Encode the input text and include the attention mask
    encoded_inputs = tokenizer(
        input_text, return_tensors="pt", return_attention_mask=True
    )
    # Ensure all values are on the correct device
    input_ids = encoded_inputs["input_ids"].to(device)
    attention_mask = encoded_inputs["attention_mask"].to(device)
    print("-- tokenize prompt --")
      # Google T5
    input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
    outputs = model.generate(
        input_ids=input_ids,
        attention_mask=attention_mask,
        max_new_tokens=65,
        temperature=0.2,
        top_p=0.9,
        do_sample=True,
    )
    # Use the encoded tensor 'text_inputs' here
    enhanced_prompt = tokenizer.decode(outputs[0], skip_special_tokens=True)
    print('-- generated prompt --')
    print(enhanced_prompt)
    enhanced_prompt = filter_text(enhanced_prompt)
    print('-- filtered prompt --')
    print(enhanced_prompt)
    print('-- generating image --')
    sd_image = pipe(
        prompt=enhanced_prompt,  # This conversion is fine
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator
    ).images[0]
    print('-- got image --')
    image_path = f"sd35m_{seed}.png"
    sd_image.save(image_path,optimize=False,compress_level=0)
    upload_to_ftp(image_path)
    refine = refiner(
            prompt=f"{prompt}, high quality masterpiece, complex details",
            negative_prompt = negative_prompt,
            guidance_scale=7.5,
            num_inference_steps=num_inference_steps,
            image=sd_image,
            generator=generator,
    ).images[0]  
    refine_path = f"refine_{seed}.png"
    refine.save(refine_path,optimize=False,compress_level=0)
    upload_to_ftp(refine_path)
    return refine, seed, refine_path, enhanced_prompt

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

def repeat_infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    num_iterations,  # New input for number of iterations
):
    i = 0
    while i < num_iterations:
        time.sleep(700)  # Wait for 10 minutes (600 seconds)
        result, seed, image_path, enhanced_prompt = infer(
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        )
        
        # Optionally, you can add logic here to process the results of each iteration
        # For example, you could display the image, save it with a different name, etc.
        i += 1
    return result, seed, image_path, enhanced_prompt


with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Text-to-Image StableDiffusion 3.5 Medium (with refine)")
        expanded_prompt_output = gr.Textbox(label="Expanded Prompt", lines=5)  # Add this line
        gr.File(label="Latents File (optional)"),  # Add a file input for latents
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                value="A captivating Christmas scene.",
                container=False,
            )
            run_button = gr.Button("Run", scale=0, variant="primary")
        result = gr.Image(label="Result", show_label=False)
        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )
            num_iterations = gr.Number(
                value=1000, 
                label="Number of Iterations")
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768,  # Replace with defaults that work for your model
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768,  # Replace with defaults that work for your model
                )
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=5.0,  # Replace with defaults that work for your model
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=500,
                    step=1,
                    value=75,  # Replace with defaults that work for your model
                )
                save_button = gr.Button("Save Image")
                image_path_output = gr.Text(visible=False)  # Hidden component to store the path
                save_button.click(
                    fn=lambda image_path: None,  # No-op function, the path is already available
                    inputs=[image_path_output],
                    outputs=None,
                )
            gr.Examples(examples=examples, inputs=[prompt])
        gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed, image_path_output, expanded_prompt_output],
        )

if __name__ == "__main__":
    demo.launch()