Spaces:
Sleeping
Sleeping
File size: 31,300 Bytes
d3eafc5 7bb3c7f 4b7af22 8d49931 4b7af22 8b39ab3 623cc58 8b39ab3 5aa1cc2 2d545c7 5aa1cc2 2d545c7 3b25c9e 2d545c7 7da2d1f 2d545c7 7da2d1f 2d545c7 7da2d1f 8d49931 a9ca915 49dfb30 4b7af22 a9ca915 d3eafc5 bb1d03c d3eafc5 a9ca915 4b7af22 a9ca915 4b7af22 925e298 4b7af22 9d03fc2 4b7af22 c5bb5c6 4b7af22 be88b26 18e0122 a9ca915 d3eafc5 4b7af22 013ed3a 4b7af22 0d9553f a9ca915 4b7af22 a5def4e 4b7af22 d3eafc5 4b7af22 c3b6a89 a41a9cf 4b7af22 d3eafc5 a9ca915 ebb05ec a9ca915 4b7af22 a9ca915 7f260df 925e298 3b480cb 4b7af22 bb1d03c 4b7af22 bb1d03c fc02b93 4b7af22 6c52595 bb1d03c 4b7af22 bb1d03c 4b7af22 623cc58 4b7af22 acc3066 a9ca915 d3eafc5 a9ca915 d3eafc5 fd283e5 a9ca915 4b7af22 d3eafc5 4b7af22 d3eafc5 4b7af22 a91770e e773b37 1b4088e 9508e95 1b4088e e773b37 1b4088e 4453bed 1b4088e a9ca915 fc02b93 4b7af22 7175b83 36823d3 3b40ad0 4b7af22 36823d3 7175b83 4b7af22 5aa1cc2 6cf9565 5b4ec73 1b4088e acc3066 a9ca915 9d03fc2 4b7af22 a9ca915 4b7af22 a9ca915 4b7af22 a91770e 3338fd0 a9ca915 9508e95 a9ca915 4b7af22 a9ca915 1b4088e fc02b93 3b480cb 36823d3 4b7af22 3b40ad0 4b7af22 36823d3 a9ca915 6cf9565 5b4ec73 36823d3 acc3066 a9ca915 9d03fc2 4b7af22 a9ca915 4b7af22 a9ca915 4b7af22 a91770e 3338fd0 a9ca915 9508e95 a9ca915 4b7af22 a9ca915 fc02b93 3b480cb 36823d3 4b7af22 3b40ad0 4b7af22 36823d3 a9ca915 6cf9565 5b4ec73 1b4088e d3eafc5 a9ca915 d3eafc5 a9ca915 d3eafc5 a9ca915 d3eafc5 9d03fc2 d3eafc5 a9ca915 d3eafc5 4b7af22 d3eafc5 4b7af22 d3eafc5 a9ca915 d3eafc5 18e0122 d3eafc5 4b7af22 a224f2b 4b7af22 acc3066 d3eafc5 4b7af22 d3eafc5 a9ca915 4b7af22 a9ca915 5b4ec73 a9ca915 4b7af22 a9ca915 5b4ec73 a9ca915 d3eafc5 a9ca915 d3eafc5 4b7af22 d3eafc5 5b4ec73 d3eafc5 4b7af22 d3eafc5 5f3c82e d3eafc5 4b7af22 d3eafc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 |
#!/usr/bin/env python
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
import spaces
import os
os.environ["SAFETENSORS_FAST_GPU"] = "1"
import subprocess
import re
def find_cuda_directories(search_paths=None):
"""Finds directories that contain "cuda" and a version number in their name.
Args:
search_paths: A list of directories to search. If None, uses common paths.
Returns:
A dictionary where keys are directory paths and values are extracted versions.
Returns an empty dictionary if no CUDA directories are found.
"""
if search_paths is None:
# Common CUDA installation locations (customize as needed)
search_paths = [
"/usr/local", # Linux
"/usr/lib", # Linux
"/opt", # Linux
"/Program Files", # Windows
"/Applications", # macOS (less common)
os.path.expanduser("~") # Check user's home directory
]
if os.name == 'nt': #Windows
search_paths.append("C:\\Program Files")
search_paths.append("C:\\Program Files (x86)")
cuda_dirs = {}
for path in search_paths:
if os.path.exists(path): # Check if the path exists
for root, dirs, files in os.walk(path): # Walk recursively
for dir_name in dirs:
match = re.search(r"cuda(\d+(\.\d+)*)", dir_name, re.IGNORECASE) # Regex for cuda and version
if match:
full_path = os.path.join(root, dir_name)
version = match.group(1)
cuda_dirs[full_path] = version
return cuda_dirs
#subprocess.run(['sh', './torch.sh'])
#import sys
#conda_prefix = os.path.expanduser("~/miniconda3")
#conda_bin = os.path.join(conda_prefix, "bin")
# Add Conda's bin directory to your PATH
#os.environ["PATH"] = conda_bin + os.pathsep + os.environ["PATH"]
# Activate the base environment (adjust if needed)
#os.system(f'{conda_bin}/conda init --all')
#os.system(f'{conda_bin}/conda activate base')
#os.system(f'{conda_bin}/conda install nvidia/label/cudnn-9.3.0::cudnn')
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-libraries')
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-libraries-dev')
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-cudart')
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-cudart-dev')
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-nvcc')
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-toolkit')
#subprocess.run(['pip', 'install', 'git+https://github.com/hidet-org/hidet.git'])
#subprocess.run(['pip', 'install', 'git+https://github.com/ford442/hidet.git@thread'])
#os.system(f'{conda_bin}/conda install pytorch::pytorch-cuda')
#os.system(f'{conda_bin}/conda install rcdr_py37::tensorrt')
#subprocess.run(['sh', './hidet.sh'])
#subprocess.run(['sh', './modelopt.sh'])
#import hidet
#print(dir(hidet))
#import torch_tensorrt
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import diffusers
from diffusers import AutoencoderKL, StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
from typing import Tuple
import paramiko
import datetime
import cyper
from image_gen_aux import UpscaleWithModel
import torch
#import torch._dynamo
#torch._dynamo.list_backends()
import time
import gc
import torch.nn.functional as F
from sageattention import sageattn
from numba import jit, njit
'''
import pythran
paramiko_include_dir = paramiko.get_include()
with open("pyt.py", "w") as f:
f.write("""
import paramiko
import os
FTP_HOST = os.getenv("FTP_HOST")
FTP_USER = os.getenv("FTP_USER")
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = os.getenv("FTP_DIR")
# pythran export upload_to_ftp(str)
def upload_to_ftp(filename):
try:
transport = paramiko.Transport((FTP_HOST, 22))
destination_path=FTP_DIR+filename
transport.connect(username = FTP_USER, password = FTP_PASS)
sftp = paramiko.SFTPClient.from_transport(transport)
sftp.put(filename, destination_path)
sftp.close()
transport.close()
print(f"Uploaded {filename} to FTP server")
except Exception as e:
print(f"FTP upload error: {e}")
""")
os.environ['DISTUTILS_USE_SDK'] = '1' # Force setuptools (distutils) to use the installed SDK.
subprocess.run(['pythran', './pyt.py', '-DUSE_XSIMD', '-fopenmp', '-march=native'])
import pyt
'''
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
# torch.backends.cuda.preferred_blas_library="cublas"
# torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
DESCRIPTIONXX = """
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester B) ⚡⚡⚡⚡
"""
examples = [
"Many apples splashed with drops of water within a fancy bowl 4k, hdr --v 6.0 --style raw",
"A profile photo of a dog, brown background, shot on Leica M6 --ar 128:85 --v 6.0 --style raw",
]
MODEL_OPTIONS = {
"REALVISXL V5.0 BF16": "ford442/RealVisXL_V5.0_BF16",
}
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "Style Zero"
STYLE_NAMES = list(styles.keys())
HF_TOKEN = os.getenv("HF_TOKEN")
FTP_HOST = os.getenv("FTP_HOST")
FTP_USER = os.getenv("FTP_USER")
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = os.getenv("FTP_DIR")
# os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
os.environ["SAFETENSORS_FAST_GPU"] = "1"
upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
# adjust the batch_size of prompt_embeds according to guidance_scale
if step_index == int(pipeline.num_timesteps * 0.1):
print("-- swapping scheduler --")
# pipeline.scheduler = euler_scheduler
torch.set_float32_matmul_precision("high")
# pipe.vae = vae_b
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.deterministic = True
torch.backends.cuda.preferred_blas_library="cublaslt"
#if step_index == int(pipeline.num_timesteps * 0.5):
# torch.set_float32_matmul_precision("medium")
#callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.float64)
#pipe.unet.to(torch.float64)
# pipe.guidance_scale=1.0
# pipe.scheduler.set_timesteps(num_inference_steps*.70)
# print(f"-- setting step {pipeline.num_timesteps * 0.1} --")
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.1
if step_index == int(pipeline.num_timesteps * 0.9):
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_tf32 = False
torch.set_float32_matmul_precision("highest")
#callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.bfloat16)
#pipe.unet.to(torch.float64)
# pipe.vae = vae_a
# pipe.unet = unet_a
torch.backends.cudnn.deterministic = False
#pipe.unet.set_default_attn_processor()
print("-- swapping scheduler --")
# pipeline.scheduler = heun_scheduler
#pipe.scheduler.set_timesteps(num_inference_steps*.70)
# print(f"-- setting step {pipeline.num_timesteps * 0.9} --")
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.9
return {"latents": callback_kwargs["latents"]}
def load_and_prepare_model():
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1 ,use_karras_sigmas=True)
vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False, device_map='cpu') #.to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
#vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='vae', safety_checker=None, use_safetensors=False).to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
#txt_1 = CLIPTextModel.from_pretrained(device_map??)
#txt_2 = CLIPTextModel.from_pretrained(vae too?)
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
pipe = StableDiffusionXLPipeline.from_pretrained(
'ford442/RealVisXL_V5.0_BF16',
#torch_dtype=torch.bfloat16,
add_watermarker=False,
# low_cpu_mem_usage = False,
token = HF_TOKEN,
# scheduler = sched,
)
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1) #,use_karras_sigmas=True)
pipe.vae = vaeXL #.to(torch.bfloat16)
pipe.scheduler = sched
pipe.vae.do_resize = False
#pipe.vae.vae_scale_factor = 8
pipe.vae.do_convert_rgb = True
pipe.vae.set_default_attn_processor()
#pipe.to(device)
#pipe.to(torch.bfloat16)
print(f'init noise scale: {pipe.scheduler.init_noise_sigma}')
pipe.watermark=None
pipe.safety_checker=None
''' # Freeze vae and unet
pipe.vae.requires_grad_(False)
pipe.unet.requires_grad_(False)
pipe.text_encoder.requires_grad_(False)
pipe.unet.eval()
pipe.vae.eval()
pipe.text_encoder.eval()
'''
#pipe.unet = pipe.unet.to(memory_format=torch.contiguous_format)
#pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/FLUX-dev-lora-add_details.safetensors", low_cpu_mem_usage=False)
#pipe.unet.to(memory_format=torch.channels_last)
#pipe.enable_vae_tiling()
#pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, mode='max-autotune') #.to(device=device, dtype=torch.bfloat16)
#pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, mode='max-autotune-no-cudagraphs') #.to(device=device, dtype=torch.bfloat16)
#pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, options={'epilogue_fusion': True, 'shape_padding': True}) #.to(device=device, dtype=torch.bfloat16)
#pipe.unet = torch.compile(pipe.unet, dynamic=False)
#pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, options={"search_space": 0})
#pipe.unet = torch.compile(pipe.unet, backend="torch_tensorrt", dynamic=False, options={"precision": torch.bfloat16,"optimization_level": 4,})
pipe.to(torch.device('cuda:0'), torch.bfloat16)
return pipe
#hidet.option.parallel_build(False)
#hidet.option.parallel_tune(2,2.0)
#torch._dynamo.config.suppress_errors = True
#torch._dynamo.disallow_in_graph(diffusers.models.attention.BasicTransformerBlock)
# more search
#hidet.torch.dynamo_config.search_space(0)
#hidet.torch.dynamo_config.dump_graph_ir("./local_graph")
# hidet.option.cache_dir("local_cache")
# automatically transform the model to use float16 data type
#hidet.torch.dynamo_config.use_fp16(True)
# use float16 data type as the accumulate data type in operators with reduction
#hidet.torch.dynamo_config.use_fp16_reduction(True)
# use tensorcore
#hidet.torch.dynamo_config.use_tensor_core()
#hidet.torch.dynamo_config.steal_weights(False)
# Preload and compile both models
pipe = load_and_prepare_model()
MAX_SEED = np.iinfo(np.int64).max
neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' "
# @jit()
def upload_to_ftp(filename):
transport = paramiko.Transport((FTP_HOST, 22))
destination_path=FTP_DIR+filename
transport.connect(username = FTP_USER, password = FTP_PASS)
sftp = paramiko.SFTPClient.from_transport(transport)
sftp.put(filename, destination_path)
sftp.close()
transport.close()
print(f"Uploaded {filename} to FTP server")
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
filename= f'rv_C_{timestamp}.txt'
with open(filename, "w") as f:
f.write(f"Realvis 5.0 (Tester C) \n")
f.write(f"Date/time: {timestamp} \n")
f.write(f"Prompt: {prompt} \n")
f.write(f"Steps: {num_inference_steps} \n")
f.write(f"Guidance Scale: {guidance_scale} \n")
f.write(f"SPACE SETUP: \n")
f.write(f"Model Scheduler: Euler_a all_custom before cuda \n")
f.write(f"Model VAE: sdxl-vae-bf16\n")
f.write(f"To cuda and bfloat \n")
upload_to_ftp(filename)
code = r'''
import torch
import paramiko
import os
FTP_HOST = os.getenv("FTP_HOST")
FTP_USER = os.getenv("FTP_USER")
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = os.getenv("FTP_DIR")
def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
# adjust the batch_size of prompt_embeds according to guidance_scale
if step_index == int(pipeline.num_timesteps * 0.1):
print("-- swapping torch modes --")
# pipeline.scheduler = euler_scheduler
torch.set_float32_matmul_precision("high")
# pipe.vae = vae_b
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.deterministic = True
torch.backends.cuda.preferred_blas_library="cublaslt"
#if step_index == int(pipeline.num_timesteps * 0.5):
# torch.set_float32_matmul_precision("medium")
#callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.float64)
#pipe.unet.to(torch.float64)
# pipe.guidance_scale=1.0
# pipe.scheduler.set_timesteps(num_inference_steps*.70)
# print(f"-- setting step {pipeline.num_timesteps * 0.1} --")
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.1
if step_index == int(pipeline.num_timesteps * 0.9):
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_tf32 = False
torch.set_float32_matmul_precision("highest")
#callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.bfloat16)
#pipe.unet.to(torch.float64)
#pipeline.unet.set_default_attn_processor() ## custom ##
# pipe.vae = vae_a
# pipe.unet = unet_a
torch.backends.cudnn.deterministic = False
print("-- swapping torch modes --")
# pipeline.scheduler = heun_scheduler
#pipe.scheduler.set_timesteps(num_inference_steps*.70)
# print(f"-- setting step {pipeline.num_timesteps * 0.9} --")
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.9
return callback_kwargs
def upload_to_ftp(filename):
try:
transport = paramiko.Transport((FTP_HOST, 22))
destination_path=FTP_DIR+filename
transport.connect(username = FTP_USER, password = FTP_PASS)
sftp = paramiko.SFTPClient.from_transport(transport)
sftp.put(filename, destination_path)
sftp.close()
transport.close()
print(f"Uploaded {filename} to FTP server")
except Exception as e:
print(f"FTP upload error: {e}")
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
filename= f'rv_B_{timestamp}.txt'
with open(filename, "w") as f:
f.write(f"Realvis 5.0 (Tester B) \n")
f.write(f"Date/time: {timestamp} \n")
f.write(f"Prompt: {prompt} \n")
f.write(f"Steps: {num_inference_steps} \n")
f.write(f"Guidance Scale: {guidance_scale} \n")
f.write(f"SPACE SETUP: \n")
f.write(f"Model VAE: sdxl-vae-bf16\n")
f.write(f"To cuda and bfloat \n")
return filename
'''
pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
@spaces.GPU(duration=40)
def generate_30(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 125,
sage: bool = False,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True)
):
if sage==True:
F.scaled_dot_product_attention = sageattn
if sage==False:
F.scaled_dot_product_attention = F.scaled_dot_product_attention
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
options = {
"prompt": [prompt],
"negative_prompt": [negative_prompt],
"negative_prompt_2": [neg_prompt_2],
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
"callback_on_step_end": scheduler_swap_callback,
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
filename = pyx.uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
upload_to_ftp(filename)
batch_options = options.copy()
rv_image = pipe(**batch_options).images[0]
sd_image_path = f"rv_B_{timestamp}.png"
rv_image.save(sd_image_path,optimize=False,compress_level=0)
upload_to_ftp(sd_image_path)
torch.set_float32_matmul_precision("medium")
with torch.no_grad():
upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
downscale_path = f"rv50_upscale_{timestamp}.png"
downscale1.save(downscale_path,optimize=False,compress_level=0)
pyx.upload_to_ftp(downscale_path)
unique_name = str(uuid.uuid4()) + ".png"
os.symlink(sd_image_path, unique_name)
return [unique_name]
@spaces.GPU(duration=70)
def generate_60(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 125,
sage: bool = False,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True)
):
if sage==True:
F.scaled_dot_product_attention = sageattn
if sage==False:
F.scaled_dot_product_attention = F.scaled_dot_product_attention
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
options = {
"prompt": [prompt],
"negative_prompt": [negative_prompt],
"negative_prompt_2": [neg_prompt_2],
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
"callback_on_step_end": pyx.scheduler_swap_callback,
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
batch_options = options.copy()
gc.collect()
torch.cuda.empty_cache()
time.sleep(2)
rv_image = pipe(**batch_options).images[0]
sd_image_path = f"rv_B_{timestamp}.png"
rv_image.save(sd_image_path,optimize=False,compress_level=0)
upload_to_ftp(sd_image_path)
unique_name = str(uuid.uuid4()) + ".png"
os.symlink(sd_image_path, unique_name)
return [unique_name]
@spaces.GPU(duration=100)
def generate_90(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
width: int = 768,
height: int = 768,
guidance_scale: float = 4,
num_inference_steps: int = 125,
sage: bool = False,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True)
):
if sage==True:
F.scaled_dot_product_attention = sageattn
if sage==False:
F.scaled_dot_product_attention = F.scaled_dot_product_attention
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
options = {
"prompt": [prompt],
"negative_prompt": [negative_prompt],
"negative_prompt_2": [neg_prompt_2],
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"generator": generator,
"output_type": "pil",
"callback_on_step_end": pyx.scheduler_swap_callback,
}
if use_resolution_binning:
options["use_resolution_binning"] = True
images = []
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
batch_options = options.copy()
gc.collect()
torch.cuda.empty_cache()
time.sleep(2)
rv_image = pipe(**batch_options).images[0]
sd_image_path = f"rv_B_{timestamp}.png"
rv_image.save(sd_image_path,optimize=False,compress_level=0)
upload_to_ftp(sd_image_path)
unique_name = str(uuid.uuid4()) + ".png"
os.symlink(sd_image_path, unique_name)
return [unique_name]
def load_predefined_images1():
predefined_images1 = [
"assets/7.png",
"assets/8.png",
"assets/9.png",
"assets/1.png",
"assets/2.png",
"assets/3.png",
"assets/4.png",
"assets/5.png",
"assets/6.png",
]
return predefined_images1
css = '''
#col-container {
margin: 0 auto;
max-width: 640px;
}
h1{text-align:center}
footer {
visibility: hidden
}
body {
background-color: green;
}
'''
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
gr.Markdown(DESCRIPTIONXX)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button_30 = gr.Button("Run 30 Seconds", scale=0)
run_button_60 = gr.Button("Run 60 Seconds", scale=0)
run_button_90 = gr.Button("Run 90 Seconds", scale=0)
result = gr.Gallery(label="Result", columns=1, show_label=False)
with gr.Row():
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Quality Style",
)
with gr.Row():
with gr.Column(scale=1):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=5,
lines=4,
placeholder="Enter a negative prompt",
value="('deformed', 'distorted', 'disfigured':1.3),'not photorealistic':1.5, 'poorly drawn', 'bad anatomy', 'wrong anatomy', 'extra limb', 'missing limb', 'floating limbs', 'poorly drawn hands', 'poorly drawn feet', 'poorly drawn face':1.3, 'out of frame', 'extra limbs', 'bad anatomy', 'bad art', 'beginner', 'distorted face','amateur'",
visible=True,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=448,
maximum=MAX_IMAGE_SIZE,
step=64,
value=768,
)
height = gr.Slider(
label="Height",
minimum=448,
maximum=MAX_IMAGE_SIZE,
step=64,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=30,
step=0.1,
value=3.8,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=1000,
step=10,
value=180,
)
options = [True, False]
sage = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=options,
value=False,
label="Use SageAttention: ",
)
gr.Examples(
examples=examples,
inputs=prompt,
cache_examples=False
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
run_button_30.click,
],
# api_name="generate", # Add this line
fn=generate_30,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
sage,
],
outputs=[result],
)
gr.on(
triggers=[
run_button_60.click,
],
# api_name="generate", # Add this line
fn=generate_60,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
sage,
],
outputs=[result],
)
gr.on(
triggers=[
run_button_90.click,
],
# api_name="generate", # Add this line
fn=generate_90,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
sage,
],
outputs=[result],
)
gr.Markdown("### REALVISXL V5.0")
predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1())
#gr.Markdown("### LIGHTNING V5.0")
#predefined_gallery = gr.Gallery(label="LIGHTNING V5.0", columns=3, show_label=False, value=load_predefined_images())
gr.Markdown(
"""
<div style="text-align: justify;">
⚡Models used in the playground <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">[REALVISXL V5.0]</a>, <a href="https://huggingface.co/SG161222/RealVisXL_V5.0_Lightning">[REALVISXL V5.0 LIGHTNING]</a> for image generation. Stable Diffusion XL piped (SDXL) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multiple different variants available.
</div>
""")
gr.Markdown(
"""
<div style="text-align: justify;">
⚡This is the demo space for generating images using Stable Diffusion XL with quality styles, different models, and types. Try the sample prompts to generate higher quality images. Try the sample prompts for generating higher quality images.
<a href='https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection' target='_blank'>Try prompts</a>.
</div>
""")
gr.Markdown(
"""
<div style="text-align: justify;">
⚠️ Users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.
</div>
""")
def text_generation(input_text, seed):
full_prompt = "Text Generator Application by ecarbo"
return full_prompt
title = "Text Generator Demo GPT-Neo"
description = "Text Generator Application by ecarbo"
if __name__ == "__main__":
cuda_directories = find_cuda_directories()
if cuda_directories:
print("Found CUDA directories:")
for directory, version in cuda_directories.items():
print(f"- {directory}: Version {version}")
else:
print("No CUDA directories found in the specified paths.")
# Example of how to find the "best" CUDA path (customize logic)
if cuda_directories:
# Simple example: just pick the first one. You might have more sophisticated selection criteria
best_cuda_path = list(cuda_directories.keys())
print(f"Using CUDA path: {best_cuda_path}")
demo_interface = demo.queue(max_size=50) # Remove .launch() here
text_gen_interface = gr.Interface(
fn=text_generation,
inputs=[
gr.Textbox(lines=1, label="Expand the following prompt to be more detailed and descriptive for image generation: "),
gr.Number(value=10, label="Enter seed number")
],
outputs=gr.Textbox(label="Text Generated"),
title=title,
description=description,
)
combined_interface = gr.TabbedInterface([demo_interface, text_gen_interface], ["Image Generation", "Text Generation"])
combined_interface.launch(show_api=False) |