Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -5,38 +5,119 @@
|
|
5 |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
6 |
# copies of the Software, and to permit persons to whom the Software is
|
7 |
import spaces
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
import os
|
11 |
import random
|
12 |
import uuid
|
13 |
import gradio as gr
|
14 |
import numpy as np
|
15 |
from PIL import Image
|
16 |
-
|
17 |
-
|
18 |
-
from diffusers import AutoencoderKL, StableDiffusionXLPipeline
|
19 |
from diffusers import EulerAncestralDiscreteScheduler
|
20 |
from typing import Tuple
|
21 |
import paramiko
|
22 |
import datetime
|
23 |
-
|
24 |
-
from
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
torch.backends.cuda.matmul.allow_tf32 = False
|
27 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
28 |
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
29 |
torch.backends.cudnn.allow_tf32 = False
|
30 |
torch.backends.cudnn.deterministic = False
|
31 |
torch.backends.cudnn.benchmark = False
|
32 |
-
torch.backends.cuda.preferred_blas_library="cublas"
|
33 |
-
torch.backends.cuda.preferred_linalg_library="cusolver"
|
34 |
torch.set_float32_matmul_precision("highest")
|
35 |
|
36 |
-
FTP_HOST = "1ink.us"
|
37 |
-
FTP_USER = "ford442"
|
38 |
-
FTP_PASS = os.getenv("FTP_PASS")
|
39 |
-
FTP_DIR = "1ink.us/stable_diff/" # Remote directory on FTP server
|
40 |
|
41 |
DESCRIPTIONXX = """
|
42 |
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester B) ⚡⚡⚡⚡
|
@@ -81,77 +162,137 @@ styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
|
81 |
DEFAULT_STYLE_NAME = "Style Zero"
|
82 |
STYLE_NAMES = list(styles.keys())
|
83 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
84 |
-
os.
|
|
|
|
|
|
|
85 |
|
|
|
|
|
86 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
def load_and_prepare_model():
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True)
|
93 |
-
#sched = DPMSolverSDEScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
|
94 |
-
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", token=True) #, beta_start=0.00085, beta_end=0.012, steps_offset=1,use_karras_sigmas=True, token=True)
|
95 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
|
|
|
|
|
|
96 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
97 |
'ford442/RealVisXL_V5.0_BF16',
|
98 |
#torch_dtype=torch.bfloat16,
|
99 |
-
token=True,
|
100 |
add_watermarker=False,
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
vae=None,
|
105 |
)
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
#pipe.vae.do_resize=False
|
116 |
-
#pipe.vae.vae_scale_factor=8
|
117 |
#pipe.to(device)
|
118 |
#pipe.to(torch.bfloat16)
|
119 |
print(f'init noise scale: {pipe.scheduler.init_noise_sigma}')
|
120 |
pipe.watermark=None
|
121 |
-
pipe.safety_checker=None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
#pipe.unet.to(memory_format=torch.channels_last)
|
123 |
#pipe.enable_vae_tiling()
|
124 |
-
pipe.to(device, torch.bfloat16)
|
125 |
-
pipe.
|
126 |
-
|
127 |
-
pipe.unet.
|
128 |
-
pipe.
|
129 |
-
|
|
|
|
|
130 |
return pipe
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
pipe = load_and_prepare_model()
|
133 |
|
134 |
-
|
135 |
-
text_encoder_2=CLIPTextModelWithProjection.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='text_encoder_2',token=True)#.to(device=device, dtype=torch.bfloat16)
|
136 |
-
|
137 |
-
MAX_SEED = np.iinfo(np.int32).max
|
138 |
|
139 |
neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' "
|
140 |
|
141 |
-
from huggingface_hub import InferenceClient
|
142 |
-
client = InferenceClient(
|
143 |
-
model="stable-diffusion-v1-5/stable-diffusion-v1-5",
|
144 |
-
#provider="hf-inference",
|
145 |
-
token=HF_TOKEN
|
146 |
-
)
|
147 |
-
|
148 |
def upload_to_ftp(filename):
|
149 |
try:
|
150 |
transport = paramiko.Transport((FTP_HOST, 22))
|
151 |
-
|
152 |
-
destination_path=FTP_DIR+'/txt/'+filename
|
153 |
-
else:
|
154 |
-
destination_path=FTP_DIR+filename
|
155 |
transport.connect(username = FTP_USER, password = FTP_PASS)
|
156 |
sftp = paramiko.SFTPClient.from_transport(transport)
|
157 |
sftp.put(filename, destination_path)
|
@@ -161,65 +302,97 @@ def upload_to_ftp(filename):
|
|
161 |
except Exception as e:
|
162 |
print(f"FTP upload error: {e}")
|
163 |
|
164 |
-
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
165 |
-
if style_name in styles:
|
166 |
-
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
167 |
-
else:
|
168 |
-
p, n = styles[DEFAULT_STYLE_NAME]
|
169 |
-
if not negative:
|
170 |
-
negative = ""
|
171 |
-
return p.replace("{prompt}", positive), n + negative
|
172 |
-
|
173 |
-
def save_image(img):
|
174 |
-
unique_name = str(uuid.uuid4()) + ".png"
|
175 |
-
img.save(unique_name,optimize=False,compress_level=0)
|
176 |
-
return unique_name
|
177 |
-
|
178 |
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
179 |
-
filename= f'
|
180 |
with open(filename, "w") as f:
|
181 |
-
f.write(f"Realvis 5.0 (Tester
|
182 |
f.write(f"Date/time: {timestamp} \n")
|
183 |
f.write(f"Prompt: {prompt} \n")
|
184 |
f.write(f"Steps: {num_inference_steps} \n")
|
185 |
f.write(f"Guidance Scale: {guidance_scale} \n")
|
186 |
f.write(f"SPACE SETUP: \n")
|
187 |
-
f.write(f"Use Model Dtype: no \n")
|
188 |
f.write(f"Model Scheduler: Euler_a all_custom before cuda \n")
|
|
|
189 |
f.write(f"To cuda and bfloat \n")
|
190 |
upload_to_ftp(filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
use_negative_prompt: bool = False,
|
196 |
-
style_selection: str = "",
|
197 |
-
width: int = 768,
|
198 |
-
height: int = 768,
|
199 |
-
guidance_scale: float = 4,
|
200 |
-
num_inference_steps: int = 125,
|
201 |
-
use_resolution_binning: bool = True,
|
202 |
-
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
|
203 |
-
):
|
204 |
-
seed = random.randint(0, MAX_SEED)
|
205 |
-
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
206 |
-
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
207 |
-
rv_image = client.text_to_image(
|
208 |
-
prompt = prompt,
|
209 |
-
negative_prompt = negative_prompt,
|
210 |
-
height = height,
|
211 |
-
width = width,
|
212 |
-
num_inference_steps = num_inference_steps,
|
213 |
-
guidance_scale = guidance_scale,
|
214 |
-
seed = seed
|
215 |
-
)
|
216 |
-
sd_image_path = f"sd15_B_{timestamp}.png"
|
217 |
-
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
218 |
-
upload_to_ftp(sd_image_path)
|
219 |
-
unique_name = str(uuid.uuid4()) + ".png"
|
220 |
-
os.symlink(sd_image_path, unique_name)
|
221 |
-
return [unique_name]
|
222 |
-
|
223 |
@spaces.GPU(duration=40)
|
224 |
def generate_30(
|
225 |
prompt: str,
|
@@ -230,13 +403,16 @@ def generate_30(
|
|
230 |
height: int = 768,
|
231 |
guidance_scale: float = 4,
|
232 |
num_inference_steps: int = 125,
|
|
|
233 |
use_resolution_binning: bool = True,
|
234 |
-
progress=gr.Progress(track_tqdm=True)
|
235 |
):
|
|
|
|
|
|
|
|
|
236 |
seed = random.randint(0, MAX_SEED)
|
237 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
238 |
-
pipe.text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16)
|
239 |
-
pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
|
240 |
options = {
|
241 |
"prompt": [prompt],
|
242 |
"negative_prompt": [negative_prompt],
|
@@ -247,17 +423,26 @@ def generate_30(
|
|
247 |
"num_inference_steps": num_inference_steps,
|
248 |
"generator": generator,
|
249 |
"output_type": "pil",
|
|
|
250 |
}
|
251 |
if use_resolution_binning:
|
252 |
options["use_resolution_binning"] = True
|
253 |
images = []
|
254 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
255 |
-
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
|
|
256 |
batch_options = options.copy()
|
257 |
rv_image = pipe(**batch_options).images[0]
|
258 |
-
sd_image_path = f"
|
259 |
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
260 |
-
upload_to_ftp(sd_image_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
unique_name = str(uuid.uuid4()) + ".png"
|
262 |
os.symlink(sd_image_path, unique_name)
|
263 |
return [unique_name]
|
@@ -272,13 +457,16 @@ def generate_60(
|
|
272 |
height: int = 768,
|
273 |
guidance_scale: float = 4,
|
274 |
num_inference_steps: int = 125,
|
|
|
275 |
use_resolution_binning: bool = True,
|
276 |
-
progress=gr.Progress(track_tqdm=True)
|
277 |
):
|
|
|
|
|
|
|
|
|
278 |
seed = random.randint(0, MAX_SEED)
|
279 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
280 |
-
pipe.text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16)
|
281 |
-
pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
|
282 |
options = {
|
283 |
"prompt": [prompt],
|
284 |
"negative_prompt": [negative_prompt],
|
@@ -289,6 +477,7 @@ def generate_60(
|
|
289 |
"num_inference_steps": num_inference_steps,
|
290 |
"generator": generator,
|
291 |
"output_type": "pil",
|
|
|
292 |
}
|
293 |
if use_resolution_binning:
|
294 |
options["use_resolution_binning"] = True
|
@@ -296,8 +485,11 @@ def generate_60(
|
|
296 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
297 |
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
298 |
batch_options = options.copy()
|
|
|
|
|
|
|
299 |
rv_image = pipe(**batch_options).images[0]
|
300 |
-
sd_image_path = f"
|
301 |
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
302 |
upload_to_ftp(sd_image_path)
|
303 |
unique_name = str(uuid.uuid4()) + ".png"
|
@@ -314,13 +506,16 @@ def generate_90(
|
|
314 |
height: int = 768,
|
315 |
guidance_scale: float = 4,
|
316 |
num_inference_steps: int = 125,
|
|
|
317 |
use_resolution_binning: bool = True,
|
318 |
-
progress=gr.Progress(track_tqdm=True)
|
319 |
):
|
|
|
|
|
|
|
|
|
320 |
seed = random.randint(0, MAX_SEED)
|
321 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
322 |
-
pipe.text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16)
|
323 |
-
pipe.text_encoder_2=text_encoder_2.to(device=device, dtype=torch.bfloat16)
|
324 |
options = {
|
325 |
"prompt": [prompt],
|
326 |
"negative_prompt": [negative_prompt],
|
@@ -331,6 +526,7 @@ def generate_90(
|
|
331 |
"num_inference_steps": num_inference_steps,
|
332 |
"generator": generator,
|
333 |
"output_type": "pil",
|
|
|
334 |
}
|
335 |
if use_resolution_binning:
|
336 |
options["use_resolution_binning"] = True
|
@@ -338,8 +534,11 @@ def generate_90(
|
|
338 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
339 |
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
340 |
batch_options = options.copy()
|
|
|
|
|
|
|
341 |
rv_image = pipe(**batch_options).images[0]
|
342 |
-
sd_image_path = f"
|
343 |
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
344 |
upload_to_ftp(sd_image_path)
|
345 |
unique_name = str(uuid.uuid4()) + ".png"
|
@@ -387,7 +586,6 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
387 |
run_button_30 = gr.Button("Run 30 Seconds", scale=0)
|
388 |
run_button_60 = gr.Button("Run 60 Seconds", scale=0)
|
389 |
run_button_90 = gr.Button("Run 90 Seconds", scale=0)
|
390 |
-
run_button_api = gr.Button("Run API", scale=0)
|
391 |
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
392 |
|
393 |
with gr.Row():
|
@@ -414,14 +612,14 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
414 |
with gr.Row():
|
415 |
width = gr.Slider(
|
416 |
label="Width",
|
417 |
-
minimum=
|
418 |
maximum=MAX_IMAGE_SIZE,
|
419 |
step=64,
|
420 |
value=768,
|
421 |
)
|
422 |
height = gr.Slider(
|
423 |
label="Height",
|
424 |
-
minimum=
|
425 |
maximum=MAX_IMAGE_SIZE,
|
426 |
step=64,
|
427 |
value=768,
|
@@ -436,11 +634,20 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
436 |
)
|
437 |
num_inference_steps = gr.Slider(
|
438 |
label="Number of inference steps",
|
439 |
-
minimum=
|
440 |
maximum=1000,
|
441 |
-
step=
|
442 |
value=180,
|
443 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
444 |
|
445 |
gr.Examples(
|
446 |
examples=examples,
|
@@ -470,6 +677,7 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
470 |
height,
|
471 |
guidance_scale,
|
472 |
num_inference_steps,
|
|
|
473 |
],
|
474 |
outputs=[result],
|
475 |
)
|
@@ -489,6 +697,7 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
489 |
height,
|
490 |
guidance_scale,
|
491 |
num_inference_steps,
|
|
|
492 |
],
|
493 |
outputs=[result],
|
494 |
)
|
@@ -508,29 +717,11 @@ with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
|
508 |
height,
|
509 |
guidance_scale,
|
510 |
num_inference_steps,
|
|
|
511 |
],
|
512 |
outputs=[result],
|
513 |
)
|
514 |
-
|
515 |
-
gr.on(
|
516 |
-
triggers=[
|
517 |
-
run_button_api.click,
|
518 |
-
],
|
519 |
-
# api_name="generate", # Add this line
|
520 |
-
fn=generate_api,
|
521 |
-
inputs=[
|
522 |
-
prompt,
|
523 |
-
negative_prompt,
|
524 |
-
use_negative_prompt,
|
525 |
-
style_selection,
|
526 |
-
width,
|
527 |
-
height,
|
528 |
-
guidance_scale,
|
529 |
-
num_inference_steps,
|
530 |
-
],
|
531 |
-
outputs=[result],
|
532 |
-
)
|
533 |
-
|
534 |
gr.Markdown("### REALVISXL V5.0")
|
535 |
predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1())
|
536 |
|
@@ -567,6 +758,24 @@ title = "Text Generator Demo GPT-Neo"
|
|
567 |
description = "Text Generator Application by ecarbo"
|
568 |
|
569 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
570 |
demo_interface = demo.queue(max_size=50) # Remove .launch() here
|
571 |
|
572 |
text_gen_interface = gr.Interface(
|
|
|
5 |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
6 |
# copies of the Software, and to permit persons to whom the Software is
|
7 |
import spaces
|
8 |
+
import os
|
9 |
+
os.environ["SAFETENSORS_FAST_GPU"] = "1"
|
10 |
|
11 |
+
import subprocess
|
12 |
+
|
13 |
+
import re
|
14 |
+
|
15 |
+
def find_cuda_directories(search_paths=None):
|
16 |
+
"""Finds directories that contain "cuda" and a version number in their name.
|
17 |
+
|
18 |
+
Args:
|
19 |
+
search_paths: A list of directories to search. If None, uses common paths.
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
A dictionary where keys are directory paths and values are extracted versions.
|
23 |
+
Returns an empty dictionary if no CUDA directories are found.
|
24 |
+
"""
|
25 |
+
|
26 |
+
if search_paths is None:
|
27 |
+
# Common CUDA installation locations (customize as needed)
|
28 |
+
search_paths = [
|
29 |
+
"/usr/local", # Linux
|
30 |
+
"/usr/lib", # Linux
|
31 |
+
"/opt", # Linux
|
32 |
+
"/Program Files", # Windows
|
33 |
+
"/Applications", # macOS (less common)
|
34 |
+
os.path.expanduser("~") # Check user's home directory
|
35 |
+
]
|
36 |
+
if os.name == 'nt': #Windows
|
37 |
+
search_paths.append("C:\\Program Files")
|
38 |
+
search_paths.append("C:\\Program Files (x86)")
|
39 |
+
|
40 |
+
cuda_dirs = {}
|
41 |
+
|
42 |
+
for path in search_paths:
|
43 |
+
if os.path.exists(path): # Check if the path exists
|
44 |
+
for root, dirs, files in os.walk(path): # Walk recursively
|
45 |
+
for dir_name in dirs:
|
46 |
+
match = re.search(r"cuda(\d+(\.\d+)*)", dir_name, re.IGNORECASE) # Regex for cuda and version
|
47 |
+
if match:
|
48 |
+
full_path = os.path.join(root, dir_name)
|
49 |
+
version = match.group(1)
|
50 |
+
cuda_dirs[full_path] = version
|
51 |
+
|
52 |
+
return cuda_dirs
|
53 |
+
|
54 |
+
#subprocess.run(['sh', './torch.sh'])
|
55 |
+
|
56 |
+
#import sys
|
57 |
+
#conda_prefix = os.path.expanduser("~/miniconda3")
|
58 |
+
#conda_bin = os.path.join(conda_prefix, "bin")
|
59 |
+
|
60 |
+
# Add Conda's bin directory to your PATH
|
61 |
+
#os.environ["PATH"] = conda_bin + os.pathsep + os.environ["PATH"]
|
62 |
+
|
63 |
+
# Activate the base environment (adjust if needed)
|
64 |
+
#os.system(f'{conda_bin}/conda init --all')
|
65 |
+
#os.system(f'{conda_bin}/conda activate base')
|
66 |
+
|
67 |
+
|
68 |
+
#os.system(f'{conda_bin}/conda install nvidia/label/cudnn-9.3.0::cudnn')
|
69 |
+
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-libraries')
|
70 |
+
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-libraries-dev')
|
71 |
+
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-cudart')
|
72 |
+
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-cudart-dev')
|
73 |
+
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-nvcc')
|
74 |
+
|
75 |
+
#os.system(f'{conda_bin}/conda install nvidia/label/cuda-12.4.0::cuda-toolkit')
|
76 |
+
|
77 |
+
#subprocess.run(['pip', 'install', 'git+https://github.com/hidet-org/hidet.git'])
|
78 |
+
#subprocess.run(['pip', 'install', 'git+https://github.com/ford442/hidet.git@thread'])
|
79 |
+
|
80 |
+
#os.system(f'{conda_bin}/conda install pytorch::pytorch-cuda')
|
81 |
+
#os.system(f'{conda_bin}/conda install rcdr_py37::tensorrt')
|
82 |
+
#subprocess.run(['sh', './hidet.sh'])
|
83 |
+
#subprocess.run(['sh', './modelopt.sh'])
|
84 |
+
#import hidet
|
85 |
+
#print(dir(hidet))
|
86 |
+
#import torch_tensorrt
|
87 |
|
|
|
88 |
import random
|
89 |
import uuid
|
90 |
import gradio as gr
|
91 |
import numpy as np
|
92 |
from PIL import Image
|
93 |
+
|
94 |
+
import diffusers
|
95 |
+
from diffusers import AutoencoderKL, StableDiffusionXLPipeline
|
96 |
from diffusers import EulerAncestralDiscreteScheduler
|
97 |
from typing import Tuple
|
98 |
import paramiko
|
99 |
import datetime
|
100 |
+
import cyper
|
101 |
+
from image_gen_aux import UpscaleWithModel
|
102 |
+
import torch
|
103 |
+
#import torch._dynamo
|
104 |
+
#torch._dynamo.list_backends()
|
105 |
+
import time
|
106 |
+
import gc
|
107 |
+
|
108 |
+
import torch.nn.functional as F
|
109 |
+
from sageattention import sageattn
|
110 |
+
|
111 |
torch.backends.cuda.matmul.allow_tf32 = False
|
112 |
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
113 |
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
114 |
torch.backends.cudnn.allow_tf32 = False
|
115 |
torch.backends.cudnn.deterministic = False
|
116 |
torch.backends.cudnn.benchmark = False
|
117 |
+
# torch.backends.cuda.preferred_blas_library="cublas"
|
118 |
+
# torch.backends.cuda.preferred_linalg_library="cusolver"
|
119 |
torch.set_float32_matmul_precision("highest")
|
120 |
|
|
|
|
|
|
|
|
|
121 |
|
122 |
DESCRIPTIONXX = """
|
123 |
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester B) ⚡⚡⚡⚡
|
|
|
162 |
DEFAULT_STYLE_NAME = "Style Zero"
|
163 |
STYLE_NAMES = list(styles.keys())
|
164 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
165 |
+
FTP_HOST = os.getenv("FTP_HOST")
|
166 |
+
FTP_USER = os.getenv("FTP_USER")
|
167 |
+
FTP_PASS = os.getenv("FTP_PASS")
|
168 |
+
FTP_DIR = os.getenv("FTP_DIR")
|
169 |
|
170 |
+
# os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
|
171 |
+
os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
|
172 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
173 |
+
os.environ["SAFETENSORS_FAST_GPU"] = "1"
|
174 |
+
|
175 |
+
upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
176 |
+
|
177 |
+
def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
|
178 |
+
# adjust the batch_size of prompt_embeds according to guidance_scale
|
179 |
+
if step_index == int(pipeline.num_timesteps * 0.1):
|
180 |
+
print("-- swapping scheduler --")
|
181 |
+
# pipeline.scheduler = euler_scheduler
|
182 |
+
torch.set_float32_matmul_precision("high")
|
183 |
+
# pipe.vae = vae_b
|
184 |
+
torch.backends.cudnn.allow_tf32 = True
|
185 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
186 |
+
torch.backends.cudnn.deterministic = True
|
187 |
+
torch.backends.cuda.preferred_blas_library="cublaslt"
|
188 |
+
#if step_index == int(pipeline.num_timesteps * 0.5):
|
189 |
+
# torch.set_float32_matmul_precision("medium")
|
190 |
+
#callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.float64)
|
191 |
+
#pipe.unet.to(torch.float64)
|
192 |
+
# pipe.guidance_scale=1.0
|
193 |
+
# pipe.scheduler.set_timesteps(num_inference_steps*.70)
|
194 |
+
# print(f"-- setting step {pipeline.num_timesteps * 0.1} --")
|
195 |
+
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.1
|
196 |
+
if step_index == int(pipeline.num_timesteps * 0.9):
|
197 |
+
torch.backends.cuda.preferred_blas_library="cublas"
|
198 |
+
torch.backends.cudnn.allow_tf32 = False
|
199 |
+
torch.backends.cuda.matmul.allow_tf32 = False
|
200 |
+
torch.set_float32_matmul_precision("highest")
|
201 |
+
#callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.bfloat16)
|
202 |
+
#pipe.unet.to(torch.float64)
|
203 |
+
# pipe.vae = vae_a
|
204 |
+
# pipe.unet = unet_a
|
205 |
+
torch.backends.cudnn.deterministic = False
|
206 |
+
#pipe.unet.set_default_attn_processor()
|
207 |
+
print("-- swapping scheduler --")
|
208 |
+
# pipeline.scheduler = heun_scheduler
|
209 |
+
#pipe.scheduler.set_timesteps(num_inference_steps*.70)
|
210 |
+
# print(f"-- setting step {pipeline.num_timesteps * 0.9} --")
|
211 |
+
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.9
|
212 |
+
return {"latents": callback_kwargs["latents"]}
|
213 |
+
|
214 |
def load_and_prepare_model():
|
215 |
+
sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1 ,use_karras_sigmas=True)
|
216 |
+
vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False, device_map='cpu') #.to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
217 |
+
#vaeRV = AutoencoderKL.from_pretrained("SG161222/RealVisXL_V5.0", subfolder='vae', safety_checker=None, use_safetensors=False).to(device).to(torch.bfloat16) #.to(device=device, dtype=torch.bfloat16)
|
|
|
|
|
|
|
218 |
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear")
|
219 |
+
#txt_1 = CLIPTextModel.from_pretrained(device_map??)
|
220 |
+
#txt_2 = CLIPTextModel.from_pretrained(vae too?)
|
221 |
+
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
|
222 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
223 |
'ford442/RealVisXL_V5.0_BF16',
|
224 |
#torch_dtype=torch.bfloat16,
|
|
|
225 |
add_watermarker=False,
|
226 |
+
# low_cpu_mem_usage = False,
|
227 |
+
token = HF_TOKEN,
|
228 |
+
# scheduler = sched,
|
|
|
229 |
)
|
230 |
+
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler',beta_schedule="scaled_linear", beta_start=0.00085, beta_end=0.012, steps_offset=1) #,use_karras_sigmas=True)
|
231 |
+
pipe.vae = vaeXL #.to(torch.bfloat16)
|
232 |
+
pipe.scheduler = sched
|
233 |
+
|
234 |
+
pipe.vae.do_resize = False
|
235 |
+
#pipe.vae.vae_scale_factor = 8
|
236 |
+
pipe.vae.do_convert_rgb = True
|
237 |
+
|
238 |
+
pipe.vae.set_default_attn_processor()
|
|
|
|
|
239 |
#pipe.to(device)
|
240 |
#pipe.to(torch.bfloat16)
|
241 |
print(f'init noise scale: {pipe.scheduler.init_noise_sigma}')
|
242 |
pipe.watermark=None
|
243 |
+
pipe.safety_checker=None
|
244 |
+
|
245 |
+
''' # Freeze vae and unet
|
246 |
+
pipe.vae.requires_grad_(False)
|
247 |
+
pipe.unet.requires_grad_(False)
|
248 |
+
pipe.text_encoder.requires_grad_(False)
|
249 |
+
pipe.unet.eval()
|
250 |
+
pipe.vae.eval()
|
251 |
+
pipe.text_encoder.eval()
|
252 |
+
'''
|
253 |
+
#pipe.unet = pipe.unet.to(memory_format=torch.contiguous_format)
|
254 |
+
#pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/FLUX-dev-lora-add_details.safetensors", low_cpu_mem_usage=False)
|
255 |
#pipe.unet.to(memory_format=torch.channels_last)
|
256 |
#pipe.enable_vae_tiling()
|
257 |
+
#pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, mode='max-autotune') #.to(device=device, dtype=torch.bfloat16)
|
258 |
+
#pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, mode='max-autotune-no-cudagraphs') #.to(device=device, dtype=torch.bfloat16)
|
259 |
+
#pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, options={'epilogue_fusion': True, 'shape_padding': True}) #.to(device=device, dtype=torch.bfloat16)
|
260 |
+
#pipe.unet = torch.compile(pipe.unet, dynamic=False)
|
261 |
+
#pipe.unet = torch.compile(pipe.unet, backend="hidet", dynamic=False, options={"search_space": 0})
|
262 |
+
#pipe.unet = torch.compile(pipe.unet, backend="torch_tensorrt", dynamic=False, options={"precision": torch.bfloat16,"optimization_level": 4,})
|
263 |
+
pipe.to(torch.device('cuda:0'), torch.bfloat16)
|
264 |
+
|
265 |
return pipe
|
266 |
+
|
267 |
+
#hidet.option.parallel_build(False)
|
268 |
+
#hidet.option.parallel_tune(2,2.0)
|
269 |
+
#torch._dynamo.config.suppress_errors = True
|
270 |
+
#torch._dynamo.disallow_in_graph(diffusers.models.attention.BasicTransformerBlock)
|
271 |
+
|
272 |
+
# more search
|
273 |
+
#hidet.torch.dynamo_config.search_space(0)
|
274 |
+
#hidet.torch.dynamo_config.dump_graph_ir("./local_graph")
|
275 |
+
# hidet.option.cache_dir("local_cache")
|
276 |
+
# automatically transform the model to use float16 data type
|
277 |
+
#hidet.torch.dynamo_config.use_fp16(True)
|
278 |
+
# use float16 data type as the accumulate data type in operators with reduction
|
279 |
+
#hidet.torch.dynamo_config.use_fp16_reduction(True)
|
280 |
+
# use tensorcore
|
281 |
+
#hidet.torch.dynamo_config.use_tensor_core()
|
282 |
+
#hidet.torch.dynamo_config.steal_weights(False)
|
283 |
+
|
284 |
+
# Preload and compile both models
|
285 |
+
|
286 |
pipe = load_and_prepare_model()
|
287 |
|
288 |
+
MAX_SEED = np.iinfo(np.int64).max
|
|
|
|
|
|
|
289 |
|
290 |
neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' "
|
291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
def upload_to_ftp(filename):
|
293 |
try:
|
294 |
transport = paramiko.Transport((FTP_HOST, 22))
|
295 |
+
destination_path=FTP_DIR+filename
|
|
|
|
|
|
|
296 |
transport.connect(username = FTP_USER, password = FTP_PASS)
|
297 |
sftp = paramiko.SFTPClient.from_transport(transport)
|
298 |
sftp.put(filename, destination_path)
|
|
|
302 |
except Exception as e:
|
303 |
print(f"FTP upload error: {e}")
|
304 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
306 |
+
filename= f'rv_C_{timestamp}.txt'
|
307 |
with open(filename, "w") as f:
|
308 |
+
f.write(f"Realvis 5.0 (Tester C) \n")
|
309 |
f.write(f"Date/time: {timestamp} \n")
|
310 |
f.write(f"Prompt: {prompt} \n")
|
311 |
f.write(f"Steps: {num_inference_steps} \n")
|
312 |
f.write(f"Guidance Scale: {guidance_scale} \n")
|
313 |
f.write(f"SPACE SETUP: \n")
|
|
|
314 |
f.write(f"Model Scheduler: Euler_a all_custom before cuda \n")
|
315 |
+
f.write(f"Model VAE: sdxl-vae-bf16\n")
|
316 |
f.write(f"To cuda and bfloat \n")
|
317 |
upload_to_ftp(filename)
|
318 |
+
|
319 |
+
code = r'''
|
320 |
+
|
321 |
+
import torch
|
322 |
+
import paramiko
|
323 |
+
import os
|
324 |
+
|
325 |
+
FTP_HOST = os.getenv("FTP_HOST")
|
326 |
+
FTP_USER = os.getenv("FTP_USER")
|
327 |
+
FTP_PASS = os.getenv("FTP_PASS")
|
328 |
+
FTP_DIR = os.getenv("FTP_DIR")
|
329 |
+
|
330 |
+
def scheduler_swap_callback(pipeline, step_index, timestep, callback_kwargs):
|
331 |
+
# adjust the batch_size of prompt_embeds according to guidance_scale
|
332 |
+
if step_index == int(pipeline.num_timesteps * 0.1):
|
333 |
+
print("-- swapping torch modes --")
|
334 |
+
# pipeline.scheduler = euler_scheduler
|
335 |
+
torch.set_float32_matmul_precision("high")
|
336 |
+
# pipe.vae = vae_b
|
337 |
+
torch.backends.cudnn.allow_tf32 = True
|
338 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
339 |
+
torch.backends.cudnn.deterministic = True
|
340 |
+
torch.backends.cuda.preferred_blas_library="cublaslt"
|
341 |
+
#if step_index == int(pipeline.num_timesteps * 0.5):
|
342 |
+
# torch.set_float32_matmul_precision("medium")
|
343 |
+
#callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.float64)
|
344 |
+
#pipe.unet.to(torch.float64)
|
345 |
+
# pipe.guidance_scale=1.0
|
346 |
+
# pipe.scheduler.set_timesteps(num_inference_steps*.70)
|
347 |
+
# print(f"-- setting step {pipeline.num_timesteps * 0.1} --")
|
348 |
+
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.1
|
349 |
+
if step_index == int(pipeline.num_timesteps * 0.9):
|
350 |
+
torch.backends.cuda.preferred_blas_library="cublas"
|
351 |
+
torch.backends.cudnn.allow_tf32 = False
|
352 |
+
torch.backends.cuda.matmul.allow_tf32 = False
|
353 |
+
torch.set_float32_matmul_precision("highest")
|
354 |
+
#callback_kwargs["latents"] = callback_kwargs["latents"].to(torch.bfloat16)
|
355 |
+
#pipe.unet.to(torch.float64)
|
356 |
+
#pipeline.unet.set_default_attn_processor() ## custom ##
|
357 |
+
# pipe.vae = vae_a
|
358 |
+
# pipe.unet = unet_a
|
359 |
+
torch.backends.cudnn.deterministic = False
|
360 |
+
print("-- swapping torch modes --")
|
361 |
+
# pipeline.scheduler = heun_scheduler
|
362 |
+
#pipe.scheduler.set_timesteps(num_inference_steps*.70)
|
363 |
+
# print(f"-- setting step {pipeline.num_timesteps * 0.9} --")
|
364 |
+
# pipeline.scheduler._step_index = pipeline.num_timesteps * 0.9
|
365 |
+
return callback_kwargs
|
366 |
+
|
367 |
+
def upload_to_ftp(filename):
|
368 |
+
try:
|
369 |
+
transport = paramiko.Transport((FTP_HOST, 22))
|
370 |
+
destination_path=FTP_DIR+filename
|
371 |
+
transport.connect(username = FTP_USER, password = FTP_PASS)
|
372 |
+
sftp = paramiko.SFTPClient.from_transport(transport)
|
373 |
+
sftp.put(filename, destination_path)
|
374 |
+
sftp.close()
|
375 |
+
transport.close()
|
376 |
+
print(f"Uploaded {filename} to FTP server")
|
377 |
+
except Exception as e:
|
378 |
+
print(f"FTP upload error: {e}")
|
379 |
+
|
380 |
+
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
|
381 |
+
filename= f'rv_B_{timestamp}.txt'
|
382 |
+
with open(filename, "w") as f:
|
383 |
+
f.write(f"Realvis 5.0 (Tester B) \n")
|
384 |
+
f.write(f"Date/time: {timestamp} \n")
|
385 |
+
f.write(f"Prompt: {prompt} \n")
|
386 |
+
f.write(f"Steps: {num_inference_steps} \n")
|
387 |
+
f.write(f"Guidance Scale: {guidance_scale} \n")
|
388 |
+
f.write(f"SPACE SETUP: \n")
|
389 |
+
f.write(f"Model VAE: sdxl-vae-bf16\n")
|
390 |
+
f.write(f"To cuda and bfloat \n")
|
391 |
+
return filename
|
392 |
|
393 |
+
'''
|
394 |
+
pyx = cyper.inline(code, fast_indexing=True, directives=dict(boundscheck=False, wraparound=False, language_level=3))
|
395 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
@spaces.GPU(duration=40)
|
397 |
def generate_30(
|
398 |
prompt: str,
|
|
|
403 |
height: int = 768,
|
404 |
guidance_scale: float = 4,
|
405 |
num_inference_steps: int = 125,
|
406 |
+
sage: bool = False,
|
407 |
use_resolution_binning: bool = True,
|
408 |
+
progress=gr.Progress(track_tqdm=True)
|
409 |
):
|
410 |
+
if sage==True:
|
411 |
+
F.scaled_dot_product_attention = sageattn
|
412 |
+
if sage==False:
|
413 |
+
F.scaled_dot_product_attention = F.scaled_dot_product_attention
|
414 |
seed = random.randint(0, MAX_SEED)
|
415 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
|
|
416 |
options = {
|
417 |
"prompt": [prompt],
|
418 |
"negative_prompt": [negative_prompt],
|
|
|
423 |
"num_inference_steps": num_inference_steps,
|
424 |
"generator": generator,
|
425 |
"output_type": "pil",
|
426 |
+
"callback_on_step_end": pyx.scheduler_swap_callback,
|
427 |
}
|
428 |
if use_resolution_binning:
|
429 |
options["use_resolution_binning"] = True
|
430 |
images = []
|
431 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
432 |
+
filename = pyx.uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
433 |
+
pyx.upload_to_ftp(filename)
|
434 |
batch_options = options.copy()
|
435 |
rv_image = pipe(**batch_options).images[0]
|
436 |
+
sd_image_path = f"rv_B_{timestamp}.png"
|
437 |
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
438 |
+
pyx.upload_to_ftp(sd_image_path)
|
439 |
+
torch.set_float32_matmul_precision("medium")
|
440 |
+
with torch.no_grad():
|
441 |
+
upscale = upscaler(rv_image, tiling=True, tile_width=256, tile_height=256)
|
442 |
+
downscale1 = upscale.resize((upscale.width // 4, upscale.height // 4), Image.LANCZOS)
|
443 |
+
downscale_path = f"rv50_upscale_{timestamp}.png"
|
444 |
+
downscale1.save(downscale_path,optimize=False,compress_level=0)
|
445 |
+
pyx.upload_to_ftp(downscale_path)
|
446 |
unique_name = str(uuid.uuid4()) + ".png"
|
447 |
os.symlink(sd_image_path, unique_name)
|
448 |
return [unique_name]
|
|
|
457 |
height: int = 768,
|
458 |
guidance_scale: float = 4,
|
459 |
num_inference_steps: int = 125,
|
460 |
+
sage: bool = False,
|
461 |
use_resolution_binning: bool = True,
|
462 |
+
progress=gr.Progress(track_tqdm=True)
|
463 |
):
|
464 |
+
if sage==True:
|
465 |
+
F.scaled_dot_product_attention = sageattn
|
466 |
+
if sage==False:
|
467 |
+
F.scaled_dot_product_attention = F.scaled_dot_product_attention
|
468 |
seed = random.randint(0, MAX_SEED)
|
469 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
|
|
470 |
options = {
|
471 |
"prompt": [prompt],
|
472 |
"negative_prompt": [negative_prompt],
|
|
|
477 |
"num_inference_steps": num_inference_steps,
|
478 |
"generator": generator,
|
479 |
"output_type": "pil",
|
480 |
+
"callback_on_step_end": pyx.scheduler_swap_callback,
|
481 |
}
|
482 |
if use_resolution_binning:
|
483 |
options["use_resolution_binning"] = True
|
|
|
485 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
486 |
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
487 |
batch_options = options.copy()
|
488 |
+
gc.collect()
|
489 |
+
torch.cuda.empty_cache()
|
490 |
+
time.sleep(2)
|
491 |
rv_image = pipe(**batch_options).images[0]
|
492 |
+
sd_image_path = f"rv_B_{timestamp}.png"
|
493 |
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
494 |
upload_to_ftp(sd_image_path)
|
495 |
unique_name = str(uuid.uuid4()) + ".png"
|
|
|
506 |
height: int = 768,
|
507 |
guidance_scale: float = 4,
|
508 |
num_inference_steps: int = 125,
|
509 |
+
sage: bool = False,
|
510 |
use_resolution_binning: bool = True,
|
511 |
+
progress=gr.Progress(track_tqdm=True)
|
512 |
):
|
513 |
+
if sage==True:
|
514 |
+
F.scaled_dot_product_attention = sageattn
|
515 |
+
if sage==False:
|
516 |
+
F.scaled_dot_product_attention = F.scaled_dot_product_attention
|
517 |
seed = random.randint(0, MAX_SEED)
|
518 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
|
|
|
|
519 |
options = {
|
520 |
"prompt": [prompt],
|
521 |
"negative_prompt": [negative_prompt],
|
|
|
526 |
"num_inference_steps": num_inference_steps,
|
527 |
"generator": generator,
|
528 |
"output_type": "pil",
|
529 |
+
"callback_on_step_end": pyx.scheduler_swap_callback,
|
530 |
}
|
531 |
if use_resolution_binning:
|
532 |
options["use_resolution_binning"] = True
|
|
|
534 |
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
535 |
uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
|
536 |
batch_options = options.copy()
|
537 |
+
gc.collect()
|
538 |
+
torch.cuda.empty_cache()
|
539 |
+
time.sleep(2)
|
540 |
rv_image = pipe(**batch_options).images[0]
|
541 |
+
sd_image_path = f"rv_B_{timestamp}.png"
|
542 |
rv_image.save(sd_image_path,optimize=False,compress_level=0)
|
543 |
upload_to_ftp(sd_image_path)
|
544 |
unique_name = str(uuid.uuid4()) + ".png"
|
|
|
586 |
run_button_30 = gr.Button("Run 30 Seconds", scale=0)
|
587 |
run_button_60 = gr.Button("Run 60 Seconds", scale=0)
|
588 |
run_button_90 = gr.Button("Run 90 Seconds", scale=0)
|
|
|
589 |
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
590 |
|
591 |
with gr.Row():
|
|
|
612 |
with gr.Row():
|
613 |
width = gr.Slider(
|
614 |
label="Width",
|
615 |
+
minimum=448,
|
616 |
maximum=MAX_IMAGE_SIZE,
|
617 |
step=64,
|
618 |
value=768,
|
619 |
)
|
620 |
height = gr.Slider(
|
621 |
label="Height",
|
622 |
+
minimum=448,
|
623 |
maximum=MAX_IMAGE_SIZE,
|
624 |
step=64,
|
625 |
value=768,
|
|
|
634 |
)
|
635 |
num_inference_steps = gr.Slider(
|
636 |
label="Number of inference steps",
|
637 |
+
minimum=10,
|
638 |
maximum=1000,
|
639 |
+
step=10,
|
640 |
value=180,
|
641 |
)
|
642 |
+
options = [True, False]
|
643 |
+
sage = gr.Radio(
|
644 |
+
show_label=True,
|
645 |
+
container=True,
|
646 |
+
interactive=True,
|
647 |
+
choices=options,
|
648 |
+
value=False,
|
649 |
+
label="Use SageAttention: ",
|
650 |
+
)
|
651 |
|
652 |
gr.Examples(
|
653 |
examples=examples,
|
|
|
677 |
height,
|
678 |
guidance_scale,
|
679 |
num_inference_steps,
|
680 |
+
sage,
|
681 |
],
|
682 |
outputs=[result],
|
683 |
)
|
|
|
697 |
height,
|
698 |
guidance_scale,
|
699 |
num_inference_steps,
|
700 |
+
sage,
|
701 |
],
|
702 |
outputs=[result],
|
703 |
)
|
|
|
717 |
height,
|
718 |
guidance_scale,
|
719 |
num_inference_steps,
|
720 |
+
sage,
|
721 |
],
|
722 |
outputs=[result],
|
723 |
)
|
724 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
725 |
gr.Markdown("### REALVISXL V5.0")
|
726 |
predefined_gallery = gr.Gallery(label="REALVISXL V5.0", columns=3, show_label=False, value=load_predefined_images1())
|
727 |
|
|
|
758 |
description = "Text Generator Application by ecarbo"
|
759 |
|
760 |
if __name__ == "__main__":
|
761 |
+
|
762 |
+
cuda_directories = find_cuda_directories()
|
763 |
+
|
764 |
+
if cuda_directories:
|
765 |
+
print("Found CUDA directories:")
|
766 |
+
for directory, version in cuda_directories.items():
|
767 |
+
print(f"- {directory}: Version {version}")
|
768 |
+
else:
|
769 |
+
print("No CUDA directories found in the specified paths.")
|
770 |
+
|
771 |
+
|
772 |
+
|
773 |
+
# Example of how to find the "best" CUDA path (customize logic)
|
774 |
+
if cuda_directories:
|
775 |
+
# Simple example: just pick the first one. You might have more sophisticated selection criteria
|
776 |
+
best_cuda_path = list(cuda_directories.keys())
|
777 |
+
print(f"Using CUDA path: {best_cuda_path}")
|
778 |
+
|
779 |
demo_interface = demo.queue(max_size=50) # Remove .launch() here
|
780 |
|
781 |
text_gen_interface = gr.Interface(
|