Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from sahi.prediction import ObjectPrediction | |
from sahi.utils.cv import visualize_object_predictions, read_image | |
from ultralyticsplus import YOLO, render_result | |
def yolov8_inference( | |
image: gr.inputs.Image = None, | |
model_path: gr.inputs.Dropdown = None, | |
image_size: gr.inputs.Slider = 640, | |
conf_threshold: gr.inputs.Slider = 0.25, | |
iou_threshold: gr.inputs.Slider = 0.45, | |
): | |
""" | |
YOLOv8 inference function | |
Args: | |
image: Input image | |
model_path: Path to the model | |
image_size: Image size | |
conf_threshold: Confidence threshold | |
iou_threshold: IOU threshold | |
Returns: | |
Rendered image | |
""" | |
model = YOLO(model_path) | |
model.overrides['conf'] = conf_threshold | |
model.overrides['iou']= iou_threshold | |
model.overrides['agnostic_nms'] = False # NMS class-agnostic | |
model.overrides['max_det'] = 999 | |
image = read_image(image) | |
results = model.predict(image) | |
render = render_result(model=model, image=image, result=results[0]) | |
return render | |
def gr_postprocess(image): | |
""" | |
Gradio postprocess function | |
Args: | |
image: Input image | |
Returns: | |
Processed image | |
""" | |
# Convert the image to RGB | |
image = image.convert('RGB') | |
# Resize the image to the desired size | |
image = image.resize((640, 480)) | |
# Convert the image to a numpy array | |
image = np.array(image) | |
return image | |
inputs = [ | |
# Images | |
gr.Examples( | |
[ | |
'samples/1.jpeg', | |
'samples/2.JPG', | |
], | |
inputs={'postprocess': gr_postprocess(inputs)}, | |
), | |
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), | |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), | |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), | |
] | |
outputs = gr.outputs.Image(type="filepath", label="Output Image") | |
title = "YOLOobjectdetection: Efficient ObjectDetection" | |
description = "π YoloTableExtract is a powerful space that utilizes YOLOv8s for accurate table detection and extraction. Whether tables are bordered or borderless, this space can effectively identify and extract them from images. For further assistance and support related to documentation or data-related issues, feel free to contact [email protected]. If you find this space helpful, please show your appreciation by liking it. β€οΈππΌ" | |
examples = [['1.jpeg', "foduucom/object_detection", 640, 0.25, 0.45], ['2.JPG', "foduucom/object_detection", 640, 0.25, 0.45]] | |
demo_app = gr.Interface( | |
fn=yolov8_inference, | |
inputs=inputs, | |
outputs=outputs, | |
title=title, | |
description=description, | |
examples=examples, | |
cache_examples=True, | |
theme='huggingface', | |
) | |
demo_app.launch(debug=True, enable_queue=True) | |