Spaces:
Runtime error
Runtime error
File size: 2,889 Bytes
c72f916 4f32028 271251d 4f32028 7754142 4f32028 271251d 0febdc1 f591895 0febdc1 4f32028 271251d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import gradio as gr
import torch
from sahi.prediction import ObjectPrediction
from sahi.utils.cv import visualize_object_predictions, read_image
from ultralyticsplus import YOLO, render_result
def yolov8_inference(
image: gr.inputs.Image = None,
model_path: gr.inputs.Dropdown = None,
image_size: gr.inputs.Slider = 640,
conf_threshold: gr.inputs.Slider = 0.25,
iou_threshold: gr.inputs.Slider = 0.45,
):
"""
YOLOv8 inference function
Args:
image: Input image
model_path: Path to the model
image_size: Image size
conf_threshold: Confidence threshold
iou_threshold: IOU threshold
Returns:
Rendered image
"""
model = YOLO(model_path)
model.overrides['conf'] = conf_threshold
model.overrides['iou']= iou_threshold
model.overrides['agnostic_nms'] = False # NMS class-agnostic
model.overrides['max_det'] = 999
image = read_image(image)
results = model.predict(image)
render = render_result(model=model, image=image, result=results[0])
return render
def gr_postprocess(image):
"""
Gradio postprocess function
Args:
image: Input image
Returns:
Processed image
"""
# Convert the image to RGB
image = image.convert('RGB')
# Resize the image to the desired size
image = image.resize((640, 480))
# Convert the image to a numpy array
image = np.array(image)
return image
inputs = [
# Images
gr.Examples(
[
'samples/1.jpeg',
'samples/2.JPG',
],
inputs={'postprocess': gr_postprocess(inputs)},
),
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
]
outputs = gr.outputs.Image(type="filepath", label="Output Image")
title = "YOLOobjectdetection: Efficient ObjectDetection"
description = "π YoloTableExtract is a powerful space that utilizes YOLOv8s for accurate table detection and extraction. Whether tables are bordered or borderless, this space can effectively identify and extract them from images. For further assistance and support related to documentation or data-related issues, feel free to contact [email protected]. If you find this space helpful, please show your appreciation by liking it. β€οΈππΌ"
examples = [['1.jpeg', "foduucom/object_detection", 640, 0.25, 0.45], ['2.JPG', "foduucom/object_detection", 640, 0.25, 0.45]]
demo_app = gr.Interface(
fn=yolov8_inference,
inputs=inputs,
outputs=outputs,
title=title,
description=description,
examples=examples,
cache_examples=True,
theme='huggingface',
)
demo_app.launch(debug=True, enable_queue=True)
|