Spaces:
Runtime error
Runtime error
Commit
·
271251d
1
Parent(s):
f4ffaec
Update app.py
Browse files
app.py
CHANGED
@@ -4,9 +4,6 @@ from sahi.prediction import ObjectPrediction
|
|
4 |
from sahi.utils.cv import visualize_object_predictions, read_image
|
5 |
from ultralyticsplus import YOLO, render_result
|
6 |
|
7 |
-
# Images
|
8 |
-
torch.hub.download_url_to_file('https://huggingface.co/spaces/foduucom/object_detection/samples/1.jpeg', '1.jpeg')
|
9 |
-
torch.hub.download_url_to_file('https://huggingface.co/spaces/foduucom/object_detection/samples/2.jpg', '2.JPG')
|
10 |
|
11 |
def yolov8_inference(
|
12 |
image: gr.inputs.Image = None,
|
@@ -30,7 +27,8 @@ def yolov8_inference(
|
|
30 |
model.overrides['conf'] = conf_threshold
|
31 |
model.overrides['iou']= iou_threshold
|
32 |
model.overrides['agnostic_nms'] = False # NMS class-agnostic
|
33 |
-
|
|
|
34 |
image = read_image(image)
|
35 |
results = model.predict(image)
|
36 |
render = render_result(model=model, image=image, result=results[0])
|
@@ -39,9 +37,8 @@ def yolov8_inference(
|
|
39 |
|
40 |
|
41 |
inputs = [
|
42 |
-
|
43 |
-
gr.
|
44 |
-
default="foduucom/object_detection", label="Model"),
|
45 |
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
46 |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
47 |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
|
@@ -62,4 +59,4 @@ demo_app = gr.Interface(
|
|
62 |
cache_examples=True,
|
63 |
theme='huggingface',
|
64 |
)
|
65 |
-
demo_app.launch(debug=True, enable_queue=True)
|
|
|
4 |
from sahi.utils.cv import visualize_object_predictions, read_image
|
5 |
from ultralyticsplus import YOLO, render_result
|
6 |
|
|
|
|
|
|
|
7 |
|
8 |
def yolov8_inference(
|
9 |
image: gr.inputs.Image = None,
|
|
|
27 |
model.overrides['conf'] = conf_threshold
|
28 |
model.overrides['iou']= iou_threshold
|
29 |
model.overrides['agnostic_nms'] = False # NMS class-agnostic
|
30 |
+
# Correct line of code
|
31 |
+
model.overrides['max_det'] = 999
|
32 |
image = read_image(image)
|
33 |
results = model.predict(image)
|
34 |
render = render_result(model=model, image=image, result=results[0])
|
|
|
37 |
|
38 |
|
39 |
inputs = [
|
40 |
+
# Images
|
41 |
+
gr.Examples(['samples/1.jpeg', 'samples/2.JPG'],),
|
|
|
42 |
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
43 |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
44 |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
|
|
|
59 |
cache_examples=True,
|
60 |
theme='huggingface',
|
61 |
)
|
62 |
+
demo_app.launch(debug=True, enable_queue=True)
|