Stardust-minus's picture
Upload folder using huggingface_hub
440bab4 verified
raw
history blame
20.9 kB
import os
import queue
import threading
import time
from contextlib import nullcontext
from dataclasses import dataclass
from pathlib import Path
from typing import Literal, Optional, Tuple, Union
import click
import numpy as np
import torch
import torch._inductor.config
from loguru import logger
from tqdm import tqdm
from transformers import AutoTokenizer
from fish_speech.content_sequence import (
ContentSequence,
TextPart,
VQPart,
)
from fish_speech.text import split_text
from fish_speech.tokenizer import IM_END_TOKEN
os.environ["TOKENIZERS_PARALLELISM"] = "false"
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.triton.unique_kernel_names = True
if hasattr(torch._inductor.config, "fx_graph_cache"):
# Experimental feature to reduce compilation times, will be on by default in future
torch._inductor.config.fx_graph_cache = True
from torch.nn.attention import SDPBackend, sdpa_kernel
from fish_speech.models.text2semantic.llama import (
DualARTransformer,
NaiveTransformer,
)
def multinomial_sample_one_no_sync(
probs_sort,
): # Does multinomial sampling without a cuda synchronization
q = torch.empty_like(probs_sort).exponential_(1)
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
def logits_to_probs(
logits,
previous_tokens: Optional[torch.Tensor] = None,
temperature: torch.Tensor = 1.0,
top_p: torch.Tensor = 1.0,
repetition_penalty: torch.Tensor = 1.0,
) -> torch.Tensor:
# Apply repetition penalty
if previous_tokens is not None:
previous_tokens = previous_tokens.long()
score = torch.gather(logits, dim=0, index=previous_tokens)
score = torch.where(
score < 0, score * repetition_penalty, score / repetition_penalty
)
logits.scatter_(dim=0, index=previous_tokens, src=score)
# Apply top-p sampling
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cum_probs > top_p
sorted_indices_to_remove[0] = False # keep at least one option
indices_to_remove = sorted_indices_to_remove.scatter(
dim=0, index=sorted_indices, src=sorted_indices_to_remove
)
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
logits = logits / max(temperature, 1e-5)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def sample(
logits,
previous_tokens: Optional[torch.Tensor] = None,
**sampling_kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
probs = logits_to_probs(
logits=logits[0, -1], previous_tokens=previous_tokens, **sampling_kwargs
)
idx_next = multinomial_sample_one_no_sync(probs)
return idx_next, probs
def decode_one_token_ar(
model: DualARTransformer,
x: torch.Tensor,
input_pos: torch.Tensor,
previous_tokens: torch.Tensor = None,
**sampling_kwargs,
) -> torch.Tensor:
"""
Generate one token using dual autoregressive transformer for text-to-speech.
First generates semantic tokens, then generates acoustic codebook tokens sequentially.
Args:
x: Input token tensor (1, num_codebooks+1, seq_len)
input_pos: Position indices for input tokens (seq_len,)
temperature/top_p/repetition_penalty: Sampling parameters (1, 1)
previous_tokens: Previous tokens for repetition penalty (1, num_codebooks+1, history_seq_len)
audio_masks/audio_parts: Audio conditioning tensors (num_codebooks, seq_len)
Returns:
Generated tokens tensor (num_codebooks+1, 1) - one token per codebook
"""
x = model.forward_generate(x, input_pos)
sampling_kwargs_main = sampling_kwargs.copy()
codebooks = [
sample(
x.logits,
previous_tokens=(
previous_tokens[0] if previous_tokens is not None else None
), # Disable repetition penalty for the token codebook
**sampling_kwargs_main,
)[0]
]
hidden_states = x.hidden_states
# Cleanup the cache
for layer in model.fast_layers:
layer.attention.kv_cache.k_cache.fill_(0)
layer.attention.kv_cache.v_cache.fill_(0)
input_pos = torch.tensor([0], device=hidden_states.device, dtype=torch.long)
model.forward_generate_fast(hidden_states, input_pos)
a = codebooks[0] - model.tokenizer.semantic_begin_id
a[a < 0] = 0
hidden_states = model.fast_embeddings(a)
codebooks.append(a)
for codebook_idx in range(1, model.config.num_codebooks):
input_pos = torch.tensor(
[codebook_idx], device=hidden_states.device, dtype=torch.long
)
logits = model.forward_generate_fast(hidden_states, input_pos)
chunked_logits = logits[..., :1024]
a = sample(
chunked_logits,
previous_tokens=(
previous_tokens[codebook_idx + 1]
if previous_tokens is not None
else None
),
**sampling_kwargs,
)[0]
hidden_states = model.fast_embeddings(a)
codebooks.append(a)
codebooks = torch.stack(codebooks, dim=0)
return codebooks
def decode_n_tokens(
model: NaiveTransformer,
cur_token: torch.Tensor,
input_pos: torch.Tensor,
num_new_tokens: int,
decode_one_token=decode_one_token_ar,
**sampling_kwargs,
):
"""
Generate n tokens iteratively using the model.
Args:
model: The transformer model
cur_token: Current token tensor of shape (1, num_codebooks+1, seq_len)
input_pos: Current input position tensor
num_new_tokens: Number of new tokens to generate
semantic_ids: List of semantic token IDs
decode_one_token: Function to decode one token
**sampling_kwargs: Additional sampling parameters
Returns:
Generated tokens tensor of shape (num_codebooks+1, generated_len)
"""
previous_tokens = torch.zeros(
(model.config.num_codebooks + 1, model.config.max_seq_len),
dtype=torch.int,
device=cur_token.device,
)
for i in tqdm(range(num_new_tokens)):
# We need to get windowed repeat penalty
win_size = 16
if i < win_size:
window = previous_tokens[:, :win_size]
else:
window = previous_tokens[:, i - win_size : i]
with sdpa_kernel(SDPBackend.MATH):
next_token = decode_one_token(
model=model,
x=cur_token,
input_pos=input_pos,
previous_tokens=window,
**sampling_kwargs,
).clone()
input_pos += 1
cur_token = next_token.view(1, model.config.num_codebooks + 1, -1)
previous_tokens[:, i : i + 1] = next_token.view(
model.config.num_codebooks + 1, -1
)
if cur_token[0, 0, -1] == model.tokenizer.get_token_id(IM_END_TOKEN):
break
return previous_tokens[:, : i + 1]
@torch.no_grad()
@torch.inference_mode()
def generate(
*,
model: NaiveTransformer,
prompt: torch.Tensor,
max_new_tokens: int,
decode_one_token=decode_one_token_ar,
**sampling_kwargs,
) -> torch.Tensor:
"""
Generate tokens from text prompt using the transformer model.
Args:
model: The transformer model for generation
prompt: Input token tensor of shape (num_codebooks+1, seq_len)
max_new_tokens: Maximum number of new tokens to generate
decode_one_token: Function to decode one token at a time
**sampling_kwargs: Additional sampling parameters (temperature, top_p, repetition_penalty)
Returns:
Generated sequence tensor of shape (num_codebooks+1, total_seq_len)
where total_seq_len = original_seq_len + generated_tokens_len
"""
T = prompt.size(1)
if max_new_tokens:
if T + max_new_tokens > model.config.max_seq_len:
max_new_tokens = model.config.max_seq_len - T
logger.info(f"Truncating max_new_tokens to {max_new_tokens}")
T_new = T + max_new_tokens
else:
T_new = model.config.max_seq_len
max_new_tokens = T_new - T
device, dtype = prompt.device, prompt.dtype
codebook_dim = 1 + model.config.num_codebooks
empty = torch.empty(
(codebook_dim, model.config.max_seq_len), dtype=dtype, device=device
)
empty[:, :T] = prompt
seq = empty
input_pos = torch.arange(0, T, device=device)
# Use non-accelerated version for now, to avoid compilation overhead
prefill_decode = decode_one_token_ar
first_token = prefill_decode(
model,
prompt.view(1, codebook_dim, -1),
input_pos,
**sampling_kwargs,
)
seq[:, T : T + 1] = first_token
input_pos = torch.tensor([T], device=device, dtype=torch.int)
x = decode_n_tokens(
model,
first_token.view(1, codebook_dim, -1),
input_pos,
max_new_tokens - 1,
decode_one_token=decode_one_token,
**sampling_kwargs,
)
seq = seq[:, : T + 1 + x.size(1)]
seq[:, T + 1 :] = x
return seq
def init_model(checkpoint_path, device, precision, compile=False):
model = DualARTransformer.from_pretrained(checkpoint_path, load_weights=True)
model = model.to(device=device, dtype=precision)
logger.info(f"Restored model from checkpoint")
if isinstance(model, DualARTransformer):
decode_one_token = decode_one_token_ar
logger.info("Using DualARTransformer")
else:
raise ValueError("Model is not a DualARTransformer")
if compile:
logger.info("Compiling function...")
decode_one_token = torch.compile(
decode_one_token,
fullgraph=True,
backend="inductor" if torch.cuda.is_available() else "aot_eager",
mode="reduce-overhead" if torch.cuda.is_available() else None,
)
return model.eval(), decode_one_token
@dataclass
class GenerateResponse:
action: Literal["sample", "next"]
codes: Optional[torch.Tensor] = None
text: Optional[str] = None
def generate_long(
*,
model,
device: str | torch.device,
decode_one_token: callable,
text: str,
num_samples: int = 1,
max_new_tokens: int = 0,
top_p: int = 0.8,
repetition_penalty: float = 1.1,
temperature: float = 0.8,
compile: bool = False,
iterative_prompt: bool = True,
chunk_length: int = 150,
prompt_text: Optional[str | list[str]] = None,
prompt_tokens: Optional[torch.Tensor | list[torch.Tensor]] = None,
):
assert 0 < top_p <= 1, "top_p must be in (0, 1]"
assert 0 < repetition_penalty < 2, "repetition_penalty must be in (0, 2)"
assert 0 < temperature < 2, "temperature must be in (0, 2)"
use_prompt = prompt_text is not None and prompt_tokens is not None
if use_prompt and isinstance(prompt_text, str):
prompt_text = [prompt_text]
prompt_tokens = [prompt_tokens]
assert use_prompt is False or len(prompt_text) == len(
prompt_tokens
), "Prompt text and tokens must have the same length"
prompt_tokens = [i.cpu() for i in prompt_tokens]
model_size = sum(p.numel() for p in model.parameters() if p.requires_grad)
tokenizer = model.tokenizer
base_content_sequence = ContentSequence(modality="interleave")
texts = split_text(text, chunk_length) if iterative_prompt else [text]
max_length = model.config.max_seq_len
if use_prompt:
for t, c in zip(prompt_text, prompt_tokens):
base_content_sequence.append(
[
TextPart(text=t),
VQPart(codes=c),
],
add_end=True,
)
encoded_prompts = base_content_sequence.encode_for_inference(
tokenizer, num_codebooks=model.config.num_codebooks
)
if encoded_prompts.size(1) > max_length - 2048:
raise ValueError(
f"Prompt is too long: {encoded_prompts.size(1)} > {max_length - 2048}"
)
encoded = []
for text in texts:
content_sequence = ContentSequence(modality=None)
content_sequence.append(TextPart(text=text))
encoded.append(
content_sequence.encode_for_inference(
tokenizer, num_codebooks=model.config.num_codebooks
)
)
logger.info(f"Encoded text: {text}")
# Move temperature, top_p, repetition_penalty to device
# This is important so that changing params doesn't trigger recompile
temperature = torch.tensor(temperature, device=device, dtype=torch.float)
top_p = torch.tensor(top_p, device=device, dtype=torch.float)
repetition_penalty = torch.tensor(
repetition_penalty, device=device, dtype=torch.float
)
for sample_idx in range(num_samples):
if torch.cuda.is_available():
torch.cuda.synchronize()
global_encoded = []
seg_idx = 0
while seg_idx < len(encoded):
logger.info(
f"Generating sentence {seg_idx + 1}/{len(encoded)} of sample {sample_idx + 1}/{num_samples}"
)
seg = encoded[seg_idx]
global_encoded.append(seg)
if len(base_content_sequence.parts) <= 1 and len(global_encoded) >= 2:
cat_encoded = torch.cat(
[encoded_prompts, global_encoded[0], global_encoded[1], seg], dim=1
)
else:
cat_encoded = torch.cat([encoded_prompts, seg], dim=1)
cat_encoded = cat_encoded.to(device=device)
prompt_length = cat_encoded.size(1)
t0 = time.perf_counter()
y = generate(
model=model,
prompt=cat_encoded,
max_new_tokens=max_new_tokens,
decode_one_token=decode_one_token,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
if sample_idx == 0 and seg_idx == 0 and compile:
logger.info(f"Compilation time: {time.perf_counter() - t0:.2f} seconds")
if torch.cuda.is_available():
torch.cuda.synchronize()
t = time.perf_counter() - t0
tokens_generated = y.size(1) - prompt_length
tokens_sec = tokens_generated / t
logger.info(
f"Generated {tokens_generated} tokens in {t:.02f} seconds, {tokens_sec:.02f} tokens/sec"
)
logger.info(
f"Bandwidth achieved: {model_size * tokens_sec / 1e9:.02f} GB/s"
)
if torch.cuda.is_available():
logger.info(
f"GPU Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB"
)
# Put the generated tokens
# since there is <im_end>, we remove last token
codes = y[1:, prompt_length:-1].clone()
assert (codes >= 0).all(), f"Negative code found"
decoded = y[:, prompt_length:].clone()
# But for global encoding, we should keep the <im_end> token
global_encoded.append(decoded.cpu())
assert (codes >= 0).all(), f"Negative code found: {codes}"
yield GenerateResponse(action="sample", codes=codes, text=texts[seg_idx])
seg_idx += 1
# This indicates the end of the current sample
yield GenerateResponse(action="next")
@dataclass
class WrappedGenerateResponse:
status: Literal["success", "error"]
response: Optional[GenerateResponse | Exception] = None
@dataclass
class GenerateRequest:
request: dict
response_queue: queue.Queue
def launch_thread_safe_queue(
checkpoint_path,
device,
precision,
compile: bool = False,
):
input_queue = queue.Queue()
init_event = threading.Event()
def worker():
model, decode_one_token = init_model(
checkpoint_path, device, precision, compile=compile
)
with torch.device(device):
model.setup_caches(
max_batch_size=1,
max_seq_len=model.config.max_seq_len,
dtype=next(model.parameters()).dtype,
)
init_event.set()
while True:
item: GenerateRequest | None = input_queue.get()
if item is None:
break
kwargs = item.request
response_queue = item.response_queue
try:
for chunk in generate_long(
model=model, decode_one_token=decode_one_token, **kwargs
):
response_queue.put(
WrappedGenerateResponse(status="success", response=chunk)
)
except Exception as e:
response_queue.put(WrappedGenerateResponse(status="error", response=e))
threading.Thread(target=worker, daemon=True).start()
init_event.wait()
return input_queue
@click.command()
@click.option(
"--text",
type=str,
default="你说的对, 但是原神是一款由米哈游自主研发的开放世界手游.",
)
@click.option("--prompt-text", type=str, default=None, multiple=True)
@click.option(
"--prompt-tokens",
type=click.Path(path_type=Path, exists=True),
default=None,
multiple=True,
)
@click.option("--num-samples", type=int, default=1)
@click.option("--max-new-tokens", type=int, default=0)
@click.option("--top-p", type=float, default=0.8)
@click.option("--repetition-penalty", type=float, default=1.1)
@click.option("--temperature", type=float, default=0.8)
@click.option(
"--checkpoint-path",
type=click.Path(path_type=Path, exists=True),
default="checkpoints/openaudio-s1-mini",
)
@click.option("--device", type=str, default="cuda")
@click.option("--compile/--no-compile", default=False)
@click.option("--seed", type=int, default=42)
@click.option("--half/--no-half", default=False)
@click.option("--iterative-prompt/--no-iterative-prompt", default=True)
@click.option("--chunk-length", type=int, default=300)
@click.option("--output-dir", type=Path, default="temp")
def main(
text: str,
prompt_text: Optional[list[str]],
prompt_tokens: Optional[list[Path]],
num_samples: int,
max_new_tokens: int,
top_p: int,
repetition_penalty: float,
temperature: float,
checkpoint_path: Path,
device: str,
compile: bool,
seed: int,
half: bool,
iterative_prompt: bool,
chunk_length: int,
output_dir: Path,
) -> None:
os.makedirs(output_dir, exist_ok=True)
precision = torch.half if half else torch.bfloat16
if prompt_text is not None and len(prompt_text) != len(prompt_tokens):
raise ValueError(
f"Number of prompt text ({len(prompt_text)}) and prompt tokens ({len(prompt_tokens)}) should be the same"
)
logger.info("Loading model ...")
t0 = time.time()
model, decode_one_token = init_model(
checkpoint_path, device, precision, compile=compile
)
with torch.device(device):
model.setup_caches(
max_batch_size=1,
max_seq_len=model.config.max_seq_len,
dtype=next(model.parameters()).dtype,
)
if torch.cuda.is_available():
torch.cuda.synchronize()
logger.info(f"Time to load model: {time.time() - t0:.02f} seconds")
if prompt_tokens is not None:
prompt_tokens = [torch.from_numpy(np.load(p)) for p in prompt_tokens]
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
generator = generate_long(
model=model,
device=device,
decode_one_token=decode_one_token,
text=text,
num_samples=num_samples,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
temperature=temperature,
compile=compile,
iterative_prompt=iterative_prompt,
chunk_length=chunk_length,
prompt_text=prompt_text,
prompt_tokens=prompt_tokens,
)
idx = 0
codes = []
for response in generator:
if response.action == "sample":
codes.append(response.codes)
logger.info(f"Sampled text: {response.text}")
elif response.action == "next":
if codes:
codes_npy_path = os.path.join(output_dir, f"codes_{idx}.npy")
np.save(codes_npy_path, torch.cat(codes, dim=1).cpu().numpy())
logger.info(f"Saved codes to {codes_npy_path}")
logger.info(f"Next sample")
codes = []
idx += 1
else:
logger.error(f"Error: {response}")
if __name__ == "__main__":
main()