import os import queue import threading import time from contextlib import nullcontext from dataclasses import dataclass from pathlib import Path from typing import Literal, Optional, Tuple, Union import click import numpy as np import torch import torch._inductor.config from loguru import logger from tqdm import tqdm from transformers import AutoTokenizer from fish_speech.content_sequence import ( ContentSequence, TextPart, VQPart, ) from fish_speech.text import split_text from fish_speech.tokenizer import IM_END_TOKEN os.environ["TOKENIZERS_PARALLELISM"] = "false" torch._inductor.config.coordinate_descent_tuning = True torch._inductor.config.triton.unique_kernel_names = True if hasattr(torch._inductor.config, "fx_graph_cache"): # Experimental feature to reduce compilation times, will be on by default in future torch._inductor.config.fx_graph_cache = True from torch.nn.attention import SDPBackend, sdpa_kernel from fish_speech.models.text2semantic.llama import ( DualARTransformer, NaiveTransformer, ) def multinomial_sample_one_no_sync( probs_sort, ): # Does multinomial sampling without a cuda synchronization q = torch.empty_like(probs_sort).exponential_(1) return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int) def logits_to_probs( logits, previous_tokens: Optional[torch.Tensor] = None, temperature: torch.Tensor = 1.0, top_p: torch.Tensor = 1.0, repetition_penalty: torch.Tensor = 1.0, ) -> torch.Tensor: # Apply repetition penalty if previous_tokens is not None: previous_tokens = previous_tokens.long() score = torch.gather(logits, dim=0, index=previous_tokens) score = torch.where( score < 0, score * repetition_penalty, score / repetition_penalty ) logits.scatter_(dim=0, index=previous_tokens, src=score) # Apply top-p sampling sorted_logits, sorted_indices = torch.sort(logits, descending=True) cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cum_probs > top_p sorted_indices_to_remove[0] = False # keep at least one option indices_to_remove = sorted_indices_to_remove.scatter( dim=0, index=sorted_indices, src=sorted_indices_to_remove ) logits = logits.masked_fill(indices_to_remove, -float("Inf")) logits = logits / max(temperature, 1e-5) probs = torch.nn.functional.softmax(logits, dim=-1) return probs def sample( logits, previous_tokens: Optional[torch.Tensor] = None, **sampling_kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: probs = logits_to_probs( logits=logits[0, -1], previous_tokens=previous_tokens, **sampling_kwargs ) idx_next = multinomial_sample_one_no_sync(probs) return idx_next, probs def decode_one_token_ar( model: DualARTransformer, x: torch.Tensor, input_pos: torch.Tensor, previous_tokens: torch.Tensor = None, **sampling_kwargs, ) -> torch.Tensor: """ Generate one token using dual autoregressive transformer for text-to-speech. First generates semantic tokens, then generates acoustic codebook tokens sequentially. Args: x: Input token tensor (1, num_codebooks+1, seq_len) input_pos: Position indices for input tokens (seq_len,) temperature/top_p/repetition_penalty: Sampling parameters (1, 1) previous_tokens: Previous tokens for repetition penalty (1, num_codebooks+1, history_seq_len) audio_masks/audio_parts: Audio conditioning tensors (num_codebooks, seq_len) Returns: Generated tokens tensor (num_codebooks+1, 1) - one token per codebook """ x = model.forward_generate(x, input_pos) sampling_kwargs_main = sampling_kwargs.copy() codebooks = [ sample( x.logits, previous_tokens=( previous_tokens[0] if previous_tokens is not None else None ), # Disable repetition penalty for the token codebook **sampling_kwargs_main, )[0] ] hidden_states = x.hidden_states # Cleanup the cache for layer in model.fast_layers: layer.attention.kv_cache.k_cache.fill_(0) layer.attention.kv_cache.v_cache.fill_(0) input_pos = torch.tensor([0], device=hidden_states.device, dtype=torch.long) model.forward_generate_fast(hidden_states, input_pos) a = codebooks[0] - model.tokenizer.semantic_begin_id a[a < 0] = 0 hidden_states = model.fast_embeddings(a) codebooks.append(a) for codebook_idx in range(1, model.config.num_codebooks): input_pos = torch.tensor( [codebook_idx], device=hidden_states.device, dtype=torch.long ) logits = model.forward_generate_fast(hidden_states, input_pos) chunked_logits = logits[..., :1024] a = sample( chunked_logits, previous_tokens=( previous_tokens[codebook_idx + 1] if previous_tokens is not None else None ), **sampling_kwargs, )[0] hidden_states = model.fast_embeddings(a) codebooks.append(a) codebooks = torch.stack(codebooks, dim=0) return codebooks def decode_n_tokens( model: NaiveTransformer, cur_token: torch.Tensor, input_pos: torch.Tensor, num_new_tokens: int, decode_one_token=decode_one_token_ar, **sampling_kwargs, ): """ Generate n tokens iteratively using the model. Args: model: The transformer model cur_token: Current token tensor of shape (1, num_codebooks+1, seq_len) input_pos: Current input position tensor num_new_tokens: Number of new tokens to generate semantic_ids: List of semantic token IDs decode_one_token: Function to decode one token **sampling_kwargs: Additional sampling parameters Returns: Generated tokens tensor of shape (num_codebooks+1, generated_len) """ previous_tokens = torch.zeros( (model.config.num_codebooks + 1, model.config.max_seq_len), dtype=torch.int, device=cur_token.device, ) for i in tqdm(range(num_new_tokens)): # We need to get windowed repeat penalty win_size = 16 if i < win_size: window = previous_tokens[:, :win_size] else: window = previous_tokens[:, i - win_size : i] with sdpa_kernel(SDPBackend.MATH): next_token = decode_one_token( model=model, x=cur_token, input_pos=input_pos, previous_tokens=window, **sampling_kwargs, ).clone() input_pos += 1 cur_token = next_token.view(1, model.config.num_codebooks + 1, -1) previous_tokens[:, i : i + 1] = next_token.view( model.config.num_codebooks + 1, -1 ) if cur_token[0, 0, -1] == model.tokenizer.get_token_id(IM_END_TOKEN): break return previous_tokens[:, : i + 1] @torch.no_grad() @torch.inference_mode() def generate( *, model: NaiveTransformer, prompt: torch.Tensor, max_new_tokens: int, decode_one_token=decode_one_token_ar, **sampling_kwargs, ) -> torch.Tensor: """ Generate tokens from text prompt using the transformer model. Args: model: The transformer model for generation prompt: Input token tensor of shape (num_codebooks+1, seq_len) max_new_tokens: Maximum number of new tokens to generate decode_one_token: Function to decode one token at a time **sampling_kwargs: Additional sampling parameters (temperature, top_p, repetition_penalty) Returns: Generated sequence tensor of shape (num_codebooks+1, total_seq_len) where total_seq_len = original_seq_len + generated_tokens_len """ T = prompt.size(1) if max_new_tokens: if T + max_new_tokens > model.config.max_seq_len: max_new_tokens = model.config.max_seq_len - T logger.info(f"Truncating max_new_tokens to {max_new_tokens}") T_new = T + max_new_tokens else: T_new = model.config.max_seq_len max_new_tokens = T_new - T device, dtype = prompt.device, prompt.dtype codebook_dim = 1 + model.config.num_codebooks empty = torch.empty( (codebook_dim, model.config.max_seq_len), dtype=dtype, device=device ) empty[:, :T] = prompt seq = empty input_pos = torch.arange(0, T, device=device) # Use non-accelerated version for now, to avoid compilation overhead prefill_decode = decode_one_token_ar first_token = prefill_decode( model, prompt.view(1, codebook_dim, -1), input_pos, **sampling_kwargs, ) seq[:, T : T + 1] = first_token input_pos = torch.tensor([T], device=device, dtype=torch.int) x = decode_n_tokens( model, first_token.view(1, codebook_dim, -1), input_pos, max_new_tokens - 1, decode_one_token=decode_one_token, **sampling_kwargs, ) seq = seq[:, : T + 1 + x.size(1)] seq[:, T + 1 :] = x return seq def init_model(checkpoint_path, device, precision, compile=False): model = DualARTransformer.from_pretrained(checkpoint_path, load_weights=True) model = model.to(device=device, dtype=precision) logger.info(f"Restored model from checkpoint") if isinstance(model, DualARTransformer): decode_one_token = decode_one_token_ar logger.info("Using DualARTransformer") else: raise ValueError("Model is not a DualARTransformer") if compile: logger.info("Compiling function...") decode_one_token = torch.compile( decode_one_token, fullgraph=True, backend="inductor" if torch.cuda.is_available() else "aot_eager", mode="reduce-overhead" if torch.cuda.is_available() else None, ) return model.eval(), decode_one_token @dataclass class GenerateResponse: action: Literal["sample", "next"] codes: Optional[torch.Tensor] = None text: Optional[str] = None def generate_long( *, model, device: str | torch.device, decode_one_token: callable, text: str, num_samples: int = 1, max_new_tokens: int = 0, top_p: int = 0.8, repetition_penalty: float = 1.1, temperature: float = 0.8, compile: bool = False, iterative_prompt: bool = True, chunk_length: int = 150, prompt_text: Optional[str | list[str]] = None, prompt_tokens: Optional[torch.Tensor | list[torch.Tensor]] = None, ): assert 0 < top_p <= 1, "top_p must be in (0, 1]" assert 0 < repetition_penalty < 2, "repetition_penalty must be in (0, 2)" assert 0 < temperature < 2, "temperature must be in (0, 2)" use_prompt = prompt_text is not None and prompt_tokens is not None if use_prompt and isinstance(prompt_text, str): prompt_text = [prompt_text] prompt_tokens = [prompt_tokens] assert use_prompt is False or len(prompt_text) == len( prompt_tokens ), "Prompt text and tokens must have the same length" prompt_tokens = [i.cpu() for i in prompt_tokens] model_size = sum(p.numel() for p in model.parameters() if p.requires_grad) tokenizer = model.tokenizer base_content_sequence = ContentSequence(modality="interleave") texts = split_text(text, chunk_length) if iterative_prompt else [text] max_length = model.config.max_seq_len if use_prompt: for t, c in zip(prompt_text, prompt_tokens): base_content_sequence.append( [ TextPart(text=t), VQPart(codes=c), ], add_end=True, ) encoded_prompts = base_content_sequence.encode_for_inference( tokenizer, num_codebooks=model.config.num_codebooks ) if encoded_prompts.size(1) > max_length - 2048: raise ValueError( f"Prompt is too long: {encoded_prompts.size(1)} > {max_length - 2048}" ) encoded = [] for text in texts: content_sequence = ContentSequence(modality=None) content_sequence.append(TextPart(text=text)) encoded.append( content_sequence.encode_for_inference( tokenizer, num_codebooks=model.config.num_codebooks ) ) logger.info(f"Encoded text: {text}") # Move temperature, top_p, repetition_penalty to device # This is important so that changing params doesn't trigger recompile temperature = torch.tensor(temperature, device=device, dtype=torch.float) top_p = torch.tensor(top_p, device=device, dtype=torch.float) repetition_penalty = torch.tensor( repetition_penalty, device=device, dtype=torch.float ) for sample_idx in range(num_samples): if torch.cuda.is_available(): torch.cuda.synchronize() global_encoded = [] seg_idx = 0 while seg_idx < len(encoded): logger.info( f"Generating sentence {seg_idx + 1}/{len(encoded)} of sample {sample_idx + 1}/{num_samples}" ) seg = encoded[seg_idx] global_encoded.append(seg) if len(base_content_sequence.parts) <= 1 and len(global_encoded) >= 2: cat_encoded = torch.cat( [encoded_prompts, global_encoded[0], global_encoded[1], seg], dim=1 ) else: cat_encoded = torch.cat([encoded_prompts, seg], dim=1) cat_encoded = cat_encoded.to(device=device) prompt_length = cat_encoded.size(1) t0 = time.perf_counter() y = generate( model=model, prompt=cat_encoded, max_new_tokens=max_new_tokens, decode_one_token=decode_one_token, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty, ) if sample_idx == 0 and seg_idx == 0 and compile: logger.info(f"Compilation time: {time.perf_counter() - t0:.2f} seconds") if torch.cuda.is_available(): torch.cuda.synchronize() t = time.perf_counter() - t0 tokens_generated = y.size(1) - prompt_length tokens_sec = tokens_generated / t logger.info( f"Generated {tokens_generated} tokens in {t:.02f} seconds, {tokens_sec:.02f} tokens/sec" ) logger.info( f"Bandwidth achieved: {model_size * tokens_sec / 1e9:.02f} GB/s" ) if torch.cuda.is_available(): logger.info( f"GPU Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB" ) # Put the generated tokens # since there is , we remove last token codes = y[1:, prompt_length:-1].clone() assert (codes >= 0).all(), f"Negative code found" decoded = y[:, prompt_length:].clone() # But for global encoding, we should keep the token global_encoded.append(decoded.cpu()) assert (codes >= 0).all(), f"Negative code found: {codes}" yield GenerateResponse(action="sample", codes=codes, text=texts[seg_idx]) seg_idx += 1 # This indicates the end of the current sample yield GenerateResponse(action="next") @dataclass class WrappedGenerateResponse: status: Literal["success", "error"] response: Optional[GenerateResponse | Exception] = None @dataclass class GenerateRequest: request: dict response_queue: queue.Queue def launch_thread_safe_queue( checkpoint_path, device, precision, compile: bool = False, ): input_queue = queue.Queue() init_event = threading.Event() def worker(): model, decode_one_token = init_model( checkpoint_path, device, precision, compile=compile ) with torch.device(device): model.setup_caches( max_batch_size=1, max_seq_len=model.config.max_seq_len, dtype=next(model.parameters()).dtype, ) init_event.set() while True: item: GenerateRequest | None = input_queue.get() if item is None: break kwargs = item.request response_queue = item.response_queue try: for chunk in generate_long( model=model, decode_one_token=decode_one_token, **kwargs ): response_queue.put( WrappedGenerateResponse(status="success", response=chunk) ) except Exception as e: response_queue.put(WrappedGenerateResponse(status="error", response=e)) threading.Thread(target=worker, daemon=True).start() init_event.wait() return input_queue @click.command() @click.option( "--text", type=str, default="你说的对, 但是原神是一款由米哈游自主研发的开放世界手游.", ) @click.option("--prompt-text", type=str, default=None, multiple=True) @click.option( "--prompt-tokens", type=click.Path(path_type=Path, exists=True), default=None, multiple=True, ) @click.option("--num-samples", type=int, default=1) @click.option("--max-new-tokens", type=int, default=0) @click.option("--top-p", type=float, default=0.8) @click.option("--repetition-penalty", type=float, default=1.1) @click.option("--temperature", type=float, default=0.8) @click.option( "--checkpoint-path", type=click.Path(path_type=Path, exists=True), default="checkpoints/openaudio-s1-mini", ) @click.option("--device", type=str, default="cuda") @click.option("--compile/--no-compile", default=False) @click.option("--seed", type=int, default=42) @click.option("--half/--no-half", default=False) @click.option("--iterative-prompt/--no-iterative-prompt", default=True) @click.option("--chunk-length", type=int, default=300) @click.option("--output-dir", type=Path, default="temp") def main( text: str, prompt_text: Optional[list[str]], prompt_tokens: Optional[list[Path]], num_samples: int, max_new_tokens: int, top_p: int, repetition_penalty: float, temperature: float, checkpoint_path: Path, device: str, compile: bool, seed: int, half: bool, iterative_prompt: bool, chunk_length: int, output_dir: Path, ) -> None: os.makedirs(output_dir, exist_ok=True) precision = torch.half if half else torch.bfloat16 if prompt_text is not None and len(prompt_text) != len(prompt_tokens): raise ValueError( f"Number of prompt text ({len(prompt_text)}) and prompt tokens ({len(prompt_tokens)}) should be the same" ) logger.info("Loading model ...") t0 = time.time() model, decode_one_token = init_model( checkpoint_path, device, precision, compile=compile ) with torch.device(device): model.setup_caches( max_batch_size=1, max_seq_len=model.config.max_seq_len, dtype=next(model.parameters()).dtype, ) if torch.cuda.is_available(): torch.cuda.synchronize() logger.info(f"Time to load model: {time.time() - t0:.02f} seconds") if prompt_tokens is not None: prompt_tokens = [torch.from_numpy(np.load(p)) for p in prompt_tokens] torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) generator = generate_long( model=model, device=device, decode_one_token=decode_one_token, text=text, num_samples=num_samples, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature, compile=compile, iterative_prompt=iterative_prompt, chunk_length=chunk_length, prompt_text=prompt_text, prompt_tokens=prompt_tokens, ) idx = 0 codes = [] for response in generator: if response.action == "sample": codes.append(response.codes) logger.info(f"Sampled text: {response.text}") elif response.action == "next": if codes: codes_npy_path = os.path.join(output_dir, f"codes_{idx}.npy") np.save(codes_npy_path, torch.cat(codes, dim=1).cpu().numpy()) logger.info(f"Saved codes to {codes_npy_path}") logger.info(f"Next sample") codes = [] idx += 1 else: logger.error(f"Error: {response}") if __name__ == "__main__": main()