Spaces:
Sleeping
Sleeping
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL | |
from diffusers.utils import load_image | |
from PIL import Image | |
import torch | |
import numpy as np | |
import cv2 | |
prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting" | |
negative_prompt = 'low quality, bad quality, sketches' | |
image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png") | |
controlnet_conditioning_scale = 0.5 # recommended for good generalization | |
controlnet = ControlNetModel.from_pretrained( | |
"diffusers/controlnet-canny-sdxl-1.0", | |
torch_dtype=torch.float16 | |
) | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
controlnet=controlnet, | |
vae=vae, | |
torch_dtype=torch.float16, | |
) | |
pipe.enable_model_cpu_offload() | |
image = np.array(image) | |
image = cv2.Canny(image, 100, 200) | |
image = image[:, :, None] | |
image = np.concatenate([image, image, image], axis=2) | |
image = Image.fromarray(image) | |
images = pipe( | |
prompt, negative_prompt=negative_prompt, image=image, controlnet_conditioning_scale=controlnet_conditioning_scale, | |
).images | |
images[0].save(f"hug_lab.png") | |