Spaces:
Running
on
A10G
Running
on
A10G
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
| 2 |
+
from diffusers.utils import load_image
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
+
import numpy as np
|
| 6 |
+
import cv2
|
| 7 |
+
|
| 8 |
+
prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
|
| 9 |
+
negative_prompt = 'low quality, bad quality, sketches'
|
| 10 |
+
|
| 11 |
+
image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png")
|
| 12 |
+
|
| 13 |
+
controlnet_conditioning_scale = 0.5 # recommended for good generalization
|
| 14 |
+
|
| 15 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 16 |
+
"diffusers/controlnet-canny-sdxl-1.0",
|
| 17 |
+
torch_dtype=torch.float16
|
| 18 |
+
)
|
| 19 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 20 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
| 21 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
| 22 |
+
controlnet=controlnet,
|
| 23 |
+
vae=vae,
|
| 24 |
+
torch_dtype=torch.float16,
|
| 25 |
+
)
|
| 26 |
+
pipe.enable_model_cpu_offload()
|
| 27 |
+
|
| 28 |
+
image = np.array(image)
|
| 29 |
+
image = cv2.Canny(image, 100, 200)
|
| 30 |
+
image = image[:, :, None]
|
| 31 |
+
image = np.concatenate([image, image, image], axis=2)
|
| 32 |
+
image = Image.fromarray(image)
|
| 33 |
+
|
| 34 |
+
images = pipe(
|
| 35 |
+
prompt, negative_prompt=negative_prompt, image=image, controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 36 |
+
).images
|
| 37 |
+
|
| 38 |
+
images[0].save(f"hug_lab.png")
|