File size: 8,183 Bytes
5494b47
8c12ff1
cc7ba83
8c12ff1
cc7ba83
 
 
 
8c12ff1
 
 
5494b47
 
 
 
 
 
 
 
8c12ff1
5494b47
 
cc7ba83
5494b47
e0afa92
 
8c12ff1
 
a408b27
 
 
5494b47
8c12ff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a408b27
c5267aa
a408b27
c5267aa
 
 
e0afa92
c5267aa
b486fa5
c5267aa
a408b27
5494b47
 
cc7ba83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5494b47
6be2e5b
 
5494b47
cc7ba83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce094ab
6be2e5b
7a38b89
 
8c12ff1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a38b89
3580710
8c12ff1
6be2e5b
 
48a6f24
 
 
 
 
 
 
 
 
 
e8ba4ba
7f07a26
48a6f24
 
 
 
 
8c12ff1
 
 
48a6f24
8c12ff1
48a6f24
c5267aa
 
 
3276af4
c5267aa
 
 
5494b47
 
 
6be2e5b
 
8c12ff1
 
6be2e5b
5494b47
 
8c12ff1
5494b47
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import gradio as gr
from huggingface_hub import login, HfFileSystem, HfApi, ModelCard
import os 

is_shared_ui = True if "fffiloni/sd-xl-custom-model" in os.environ['SPACE_ID'] else False
hf_token = os.environ.get("HF_TOKEN")
login(token=hf_token)

fs = HfFileSystem(token=hf_token)
api = HfApi()

import torch
from diffusers import DiffusionPipeline, AutoencoderKL

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)

pipe = DiffusionPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    vae=vae, torch_dtype=torch.float16, variant="fp16",
    #use_safetensors=True
)

device="cuda" if torch.cuda.is_available() else "cpu"

pipe.to(device)

def load_model(custom_model):

    if custom_model == "":
        gr.Warning("If you want to use a private model, you need to duplicate this space on your personal account.")
        raise gr.Error("You forgot to define Model ID.")

    # Get instance_prompt a.k.a trigger word
    card = ModelCard.load(custom_model)
    repo_data = card.data.to_dict()
    instance_prompt = repo_data.get("instance_prompt")

    if instance_prompt is not None:
        print(f"Trigger word: {instance_prompt}")
    else:
        instance_prompt = "no trigger word needed"
        print(f"Trigger word: no trigger word needed")

    # List all ".safetensors" files in repo
    sfts_available_files = fs.glob(f"{custom_model}/*safetensors")
    sfts_available_files = get_files(sfts_available_files)

    if sfts_available_files == []:
        sfts_available_files = ["NO SAFETENSORS FILE"]

    print(f"Safetensors available: {sfts_available_files}")

    return gr.update(choices=sfts_available_files, value=sfts_available_files[0], visible=True), gr.update(value=instance_prompt, visible=True)



def infer (custom_model, weight_name, prompt, inf_steps, guidance_scale, seed, lora_weight, progress=gr.Progress(track_tqdm=True)):

    if weight_name == "NO SAFETENSORS FILE": 
        pipe.load_lora_weights(
            custom_model,     
            low_cpu_mem_usage = True,
            use_auth_token = True
        )

    else:
        pipe.load_lora_weights(
            custom_model,
            weight_name = weight_name,        
            low_cpu_mem_usage = True,
            use_auth_token = True
        )

    pipe.fuse_lora(lora_weight)

    if seed < 0 :
        seed = random.randint(0, 423538377342)
    
    generator = torch.Generator(device="cuda").manual_seed(seed)
    
    image = pipe(
        prompt=prompt, 
        num_inference_steps=inf_steps,
        guidance_scale = guidance_scale,
        generator=generator,
        cross_attention_kwargs={"scale": lora_weight}
    ).images[0]
    
    return image

css="""
#col-container{
    margin: 0 auto;
    max-width: 680px;
    text-align: left;
}
div#warning-duplicate {
    background-color: #ebf5ff;
    padding: 0 10px 5px;
    margin: 20px 0;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
    color: #0f4592!important;
}
div#warning-duplicate strong {
    color: #0f4592;
}
p.actions {
    display: flex;
    align-items: center;
    margin: 20px 0;
}
div#warning-duplicate .actions a {
    display: inline-block;
    margin-right: 10px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        if is_shared_ui:
            top_description = gr.HTML(f'''
                <div class="gr-prose">
                    <h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
                    Note: you might want to use a private custom LoRa model</h2>
                    <p class="main-message">
                        To do so, <strong>duplicate the Space</strong> and run it on your own profile using <strong>your own access token</strong> and eventually a GPU (T4-small or A10G-small) for faster inference without waiting in the queue.<br />
                    </p>
                    <p class="actions">
                        <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
                            <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
                        </a>
                        to start using private models and skip the queue
                    </p>
                </div>
            ''', elem_id="warning-duplicate")
        gr.HTML("""
<h2 style="text-align: center;">SD-XL Custom Model Inference</h2>
<p style="text-align: center;">Use this demo to check results from your previously trained LoRa model.</p>
        """)
        with gr.Row():
            with gr.Column():
                if not is_shared_ui:
                    your_username = api.whoami()["name"]
                    my_models = api.list_models(author=your_username, filter=["diffusers", "stable-diffusion-xl", 'lora'])
                    model_names = [item.modelId for item in my_models]

                if not is_shared_ui:
                    custom_model = gr.Dropdown(
                        label = "Your custom model ID",
                        choices = model_names,
                        allow_custom_value = True
                        #placeholder = "username/model_id"
                    )
                else:
                    custom_model = gr.Textbox(
                        label="Your custom model ID", 
                        placeholder="your_username/your_trained_model_name", 
                        info="Make sure your model is set to PUBLIC"
                    )
                
                weight_name = gr.Dropdown(
                    label="Safetensors file", 
                    #value="pytorch_lora_weights.safetensors", 
                    info="specify which one if model has several .safetensors files",
                    visible = False
                )
            with gr.Column():
                load_model_btn = gr.Button("Load my model")
                trigger_word = gr.Textbox(label="Trigger word", interactive=False, visible=False)
        
        prompt_in = gr.Textbox(label="Prompt")   
        with gr.Row():
            inf_steps = gr.Slider(
                label="Inference steps",
                minimum=12,
                maximum=50,
                step=1,
                value=25
            )
            guidance_scale = gr.Slider(
                label="Guidance scale",
                minimum=0.0,
                maximum=50.0,
                step=0.1,
                value=7.5
            )
            seed = gr.Slider(
                label="Seed",
                info = "-1 denotes a random seed",
                minimum=-1,
                maximum=423538377342,
                step=1,
                value=-1
            )
        lora_weight = gr.Slider(
            label="LoRa weigth",
            minimum=0.0,
            maximum=1.0,
            step=0.01,
            value=0.9
        )
        submit_btn = gr.Button("Submit")
        image_out = gr.Image(label="Image output")

    load_model_btn.click(
        fn = load_model,
        inputs=[custom_model],
        outputs = [model_status, weight_name, trigger_word]
    )
    submit_btn.click(
        fn = infer,
        inputs = [custom_model, weight_name, prompt_in, inf_steps, guidance_scale, seed, lora_weight],
        outputs = [image_out]
    )

demo.queue().launch()