Spaces:
Sleeping
Sleeping
raise a gr.Error if model is missing
Browse files
app.py
CHANGED
@@ -19,13 +19,21 @@ pipe = DiffusionPipeline.from_pretrained(
|
|
19 |
device="cuda" if torch.cuda.is_available() else "cpu"
|
20 |
|
21 |
def load_model(custom_model, weight_name):
|
|
|
|
|
|
|
|
|
|
|
22 |
# This is where you load your trained weights
|
23 |
pipe.load_lora_weights(custom_model, weight_name=weight_name, use_auth_token=True)
|
24 |
pipe.to(device)
|
|
|
25 |
return "Model loaded!"
|
26 |
|
27 |
def infer (prompt, inf_steps, guidance_scale, seed, lora_weight, progress=gr.Progress(track_tqdm=True)):
|
|
|
28 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
|
|
29 |
image = pipe(
|
30 |
prompt=prompt,
|
31 |
num_inference_steps=inf_steps,
|
@@ -33,6 +41,7 @@ def infer (prompt, inf_steps, guidance_scale, seed, lora_weight, progress=gr.Pro
|
|
33 |
generator=generator,
|
34 |
cross_attention_kwargs={"scale": lora_weight}
|
35 |
).images[0]
|
|
|
36 |
return image
|
37 |
|
38 |
css="""
|
|
|
19 |
device="cuda" if torch.cuda.is_available() else "cpu"
|
20 |
|
21 |
def load_model(custom_model, weight_name):
|
22 |
+
|
23 |
+
if custom_model == "":
|
24 |
+
gr.Warning("If you want to use a private model, you need to duplicate this space on your personal account.")
|
25 |
+
raise gr.Error("You forgot to define Model ID.")
|
26 |
+
|
27 |
# This is where you load your trained weights
|
28 |
pipe.load_lora_weights(custom_model, weight_name=weight_name, use_auth_token=True)
|
29 |
pipe.to(device)
|
30 |
+
|
31 |
return "Model loaded!"
|
32 |
|
33 |
def infer (prompt, inf_steps, guidance_scale, seed, lora_weight, progress=gr.Progress(track_tqdm=True)):
|
34 |
+
|
35 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
36 |
+
|
37 |
image = pipe(
|
38 |
prompt=prompt,
|
39 |
num_inference_steps=inf_steps,
|
|
|
41 |
generator=generator,
|
42 |
cross_attention_kwargs={"scale": lora_weight}
|
43 |
).images[0]
|
44 |
+
|
45 |
return image
|
46 |
|
47 |
css="""
|