File size: 10,530 Bytes
d385f3b
143b464
c4c4663
d385f3b
 
c4c4663
d661acb
d385f3b
d232776
03e6ae6
d385f3b
 
0d0ce41
d385f3b
c4c4663
03e6ae6
 
c4c4663
f2e99a3
c4c4663
 
f2e99a3
03e6ae6
 
 
 
f2e99a3
03e6ae6
 
 
 
 
 
 
 
62c47fb
 
 
 
 
 
 
6d25e94
 
62c47fb
 
6d25e94
62c47fb
 
 
 
 
 
 
 
6d25e94
 
 
 
62c47fb
6d25e94
 
 
 
b090534
40f269b
 
62c47fb
 
 
9eaa2e4
6d25e94
d232776
c4c4663
396365e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d385f3b
 
 
 
c4c4663
 
 
 
 
d385f3b
03e6ae6
 
 
 
 
d385f3b
03e6ae6
 
 
d385f3b
03e6ae6
d385f3b
d232776
c4c4663
396365e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62c47fb
c4c4663
 
 
 
 
 
 
 
03e6ae6
 
396365e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2e99a3
03e6ae6
 
 
 
 
 
 
 
 
 
 
 
143b464
03e6ae6
6b11af7
396365e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2e99a3
62c47fb
6b11af7
 
 
 
 
 
 
 
b090534
6b11af7
 
62c47fb
 
6b11af7
 
62c47fb
 
 
03e6ae6
b3908ae
03e6ae6
c4c4663
d232776
d9599f2
c4c4663
5ce738f
 
 
 
 
 
 
 
 
 
 
c4c4663
03e6ae6
 
 
 
d232776
 
 
 
03e6ae6
 
d232776
03e6ae6
c4c4663
03e6ae6
d232776
 
 
 
03e6ae6
 
d232776
03e6ae6
 
 
 
 
c4c4663
03e6ae6
 
 
 
 
d385f3b
 
396365e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import subprocess
import uuid
import torch
import torchaudio
import torchaudio.transforms as T
import soundfile as sf
import gradio as gr
import spaces
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeAudioClip
import look2hear.models

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load models
dnr_model = look2hear.models.TIGERDNR.from_pretrained("JusperLee/TIGER-DnR", cache_dir="cache").to(device).eval()
sep_model = look2hear.models.TIGER.from_pretrained("JusperLee/TIGER-speech", cache_dir="cache").to(device).eval()

TARGET_SR = 16000
MAX_SPEAKERS = 4

def extract_audio_from_video(video_path, freq):
    video = VideoFileClip(video_path)
    session_id = uuid.uuid4().hex[:8]
    audio_path = f"temp_audio/{session_id}.wav"
    os.makedirs("temp_audio", exist_ok=True)
    video.audio.write_audiofile(audio_path, fps=freq, verbose=False, logger=None)
    return audio_path, video

def attach_audio_to_video(original_video, audio_path, out_path):
    new_audio = AudioFileClip(audio_path)
    new_video = original_video.set_audio(new_audio)
    new_video.write_videofile(out_path, audio_codec='aac', verbose=False, logger=None)
    return out_path


def separate_speakers_core(audio_path):
    waveform, original_sr = torchaudio.load(audio_path)
    if original_sr != TARGET_SR:
        waveform = T.Resample(orig_freq=original_sr, new_freq=TARGET_SR)(waveform)

    if waveform.dim() == 1:
        waveform = waveform.unsqueeze(0)  # Ensure shape is (1, samples)
    audio_input = waveform.unsqueeze(0).to(device)  # Shape: (1, 1, samples)

    with torch.no_grad():
        ests_speech = sep_model(audio_input).squeeze(0)  # Shape: (num_speakers, samples)

    session_id = uuid.uuid4().hex[:8]
    output_dir = os.path.join("output_sep", session_id)
    os.makedirs(output_dir, exist_ok=True)

    output_files = []
    for i in range(ests_speech.shape[0]):
        path = os.path.join(output_dir, f"speaker_{i+1}.wav")
        speaker_waveform = ests_speech[i].cpu()

        if speaker_waveform.dim() == 1:
            speaker_waveform = speaker_waveform.unsqueeze(0)  # (1, samples)

        # Ensure correct dtype and save in a widely compatible format
        speaker_waveform = speaker_waveform.to(torch.float32)
        torchaudio.save(path, speaker_waveform, TARGET_SR, format="wav", encoding="PCM_S", bits_per_sample=16)
        output_files.append(path)

    print(output_files)

    return output_files




@spaces.GPU()
def separate_dnr(audio_file):
    """
    Perform Dialog, Effects, and Music (DnR) separation on an uploaded audio file.

    Args:
        audio_file (str): File path to the input WAV audio file. 
            This should be a mixed audio track containing dialog, background music, and sound effects.

    Returns:
        Tuple[str, str, str]: Paths to the separated audio files:
            - Dialog-only audio (dialog.wav)
            - Sound effects-only audio (effect.wav)
            - Background music-only audio (music.wav)

    This function uses a pretrained DnR model (TIGER-DnR) to isolate the components in the audio.
    It is intended for tasks such as improving intelligibility or remixing.
    """

    audio, sr = torchaudio.load(audio_file)
    audio = audio.to(device)

    with torch.no_grad():
        dialog, effect, music = dnr_model(audio[None])

    session_id = uuid.uuid4().hex[:8]
    output_dir = os.path.join("output_dnr", session_id)
    os.makedirs(output_dir, exist_ok=True)

    paths = {
        "dialog": os.path.join(output_dir, "dialog.wav"),
        "effect": os.path.join(output_dir, "effect.wav"),
        "music": os.path.join(output_dir, "music.wav"),
    }

    torchaudio.save(paths["dialog"], dialog.cpu(), sr)
    torchaudio.save(paths["effect"], effect.cpu(), sr)
    torchaudio.save(paths["music"], music.cpu(), sr)

    return paths["dialog"], paths["effect"], paths["music"]

@spaces.GPU()
def separate_speakers(audio_path):
    """
    Perform speaker separation on a mixed audio file containing multiple speakers.

    Args:
        audio_path (str): File path to the audio WAV file containing overlapping speech from multiple people.

    Returns:
        List[gr.update]: A list of Gradio update objects, each containing:
            - A separate audio file for each identified speaker (up to MAX_SPEAKERS)
            - Visibility and label updates for the UI

    This function internally calls a pretrained speech separation model (TIGER-speech) 
    and isolates individual speaker tracks from the input audio.
    """

    output_files = separate_speakers_core(audio_path)
    updates = []
    for i in range(MAX_SPEAKERS):
        if i < len(output_files):
            updates.append(gr.update(value=output_files[i], visible=True, label=f"Speaker {i+1}"))
        else:
            updates.append(gr.update(value=None, visible=False))
    return updates

@spaces.GPU()
def separate_dnr_video(video_path):
    """
    Separate dialog, effects, and music from the audio of an uploaded video file and reattach them to the original video.

    Args:
        video_path (str): File path to the input video file (e.g., MP4 or MOV).
            The video should contain a composite audio track with dialog, effects, and music.

    Returns:
        Tuple[str, str, str]: Paths to the output videos with:
            - Only dialog audio track (dialog_video.mp4)
            - Only effects audio track (effect_video.mp4)
            - Only music audio track (music_video.mp4)

    The audio is extracted from the video, separated using the DnR model, and then reattached to the original video visuals.
    """

    audio_path, video = extract_audio_from_video(video_path, 44100)
    dialog_path, effect_path, music_path = separate_dnr(audio_path)

    session_id = uuid.uuid4().hex[:8]
    output_dir = os.path.join("output_dnr_video", session_id)
    os.makedirs(output_dir, exist_ok=True)

    dialog_video = attach_audio_to_video(video, dialog_path, os.path.join(output_dir, "dialog_video.mp4"))
    effect_video = attach_audio_to_video(video, effect_path, os.path.join(output_dir, "effect_video.mp4"))
    music_video = attach_audio_to_video(video, music_path, os.path.join(output_dir, "music_video.mp4"))

    return dialog_video, effect_video, music_video


@spaces.GPU()
def separate_speakers_video(video_path):
    """
    Separate individual speakers from the audio track of a video and reattach each speaker’s voice to a copy of the original video.

    Args:
        video_path (str): File path to a video file with overlapping speech from multiple speakers.

    Returns:
        List[gr.update]: A list of Gradio update objects each containing:
            - A new video file where the audio consists of only one speaker's voice
            - Visibility and label information for UI display

    The function extracts audio from the video, separates individual speakers using a pretrained model,
    and generates one video per speaker by replacing the audio in the original video.
    """

    audio_path, video = extract_audio_from_video(video_path, 16000)
    output_files = separate_speakers_core(audio_path)

    session_id = uuid.uuid4().hex[:8]
    output_dir = os.path.join("output_sep_video", session_id)
    os.makedirs(output_dir, exist_ok=True)

    output_videos = []
    for i, audio_file in enumerate(output_files):
        speaker_video_path = os.path.join(output_dir, f"speaker_{i+1}_video.mp4")
        video_with_sep_audio = attach_audio_to_video(video, audio_file, speaker_video_path)
        output_videos.append(video_with_sep_audio)

    updates = []
    for i in range(MAX_SPEAKERS):
        if i < len(output_videos):
            updates.append(gr.update(value=output_videos[i], visible=True, label=f"Speaker {i+1}"))
        else:
            updates.append(gr.update(value=None, visible=False))
    return updates


# --- Gradio UI ---
with gr.Blocks() as demo:
    gr.Markdown("# TIGER: Time-frequency Interleaved Gain Extraction and Reconstruction for Efficient Speech Separation")
    gr.Markdown("TIGER is a lightweight model for speech separation which effectively extracts key acoustic features through frequency band-split, multi-scale and full-frequency-frame modeling.")

    gr.HTML("""
            <div style="display:flex;column-gap:4px;">
                <a href="https://cslikai.cn/TIGER/">
                    <img src='https://img.shields.io/badge/Project-Page-green'>
                </a> 
    			
                <a href="https://huggingface.co/spaces/fffiloni/TIGER-audio-extraction?duplicate=true">
    				<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
    			</a>	
            </div>
        """)

    with gr.Tabs():
        with gr.Tab("Audio DnR"):
            dnr_input = gr.Audio(type="filepath", label="Upload Audio")
            dnr_btn = gr.Button("Separate")
            gr.Examples(
                examples = ["./test/test_mixture_466.wav"],
                inputs = dnr_input
            )
            dnr_output = [gr.Audio(label=l) for l in ["Dialog", "Effects", "Music"]]
            dnr_btn.click(separate_dnr, inputs=dnr_input, outputs=dnr_output)

        with gr.Tab("Audio Speaker Separation"):
            sep_input = gr.Audio(type="filepath", label="Upload Speech Audio")
            sep_btn = gr.Button("Separate Speakers")
            gr.Examples(
                examples = ["./test/mix.wav"],
                inputs = sep_input
            )
            sep_outputs = [gr.Audio(label=f"Speaker {i+1}", visible=(i==0)) for i in range(MAX_SPEAKERS)]
            sep_btn.click(separate_speakers, inputs=sep_input, outputs=sep_outputs)

        with gr.Tab("Video DnR"):
            vdnr_input = gr.Video(label="Upload Video")
            vdnr_btn = gr.Button("Separate Audio Tracks")
            vdnr_output = [gr.Video(label=l) for l in ["Dialog Video", "Effects Video", "Music Video"]]
            vdnr_btn.click(separate_dnr_video, inputs=vdnr_input, outputs=vdnr_output)

        with gr.Tab("Video Speaker Separation"):
            vsep_input = gr.Video(label="Upload Video")
            vsep_btn = gr.Button("Separate Speakers")
            vsep_outputs = [gr.Video(label=f"Speaker {i+1}", visible=(i==0)) for i in range(MAX_SPEAKERS)]
            vsep_btn.click(separate_speakers_video, inputs=vsep_input, outputs=vsep_outputs)

if __name__ == "__main__":
    demo.launch(ssr_mode=False, mcp_server=True)