Spaces:
Running
on
Zero
Running
on
Zero
Update gradio_app.py
Browse files- gradio_app.py +99 -26
gradio_app.py
CHANGED
@@ -1,47 +1,120 @@
|
|
1 |
import os
|
|
|
2 |
import torch
|
3 |
import torchaudio
|
|
|
4 |
import gradio as gr
|
5 |
import look2hear.models
|
6 |
|
7 |
-
# Setup
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
audio, sr = torchaudio.load(audio_file)
|
17 |
audio = audio.to(device)
|
18 |
|
19 |
with torch.no_grad():
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
music_path = "music_output.wav"
|
26 |
|
27 |
-
torchaudio.save(dialog_path,
|
28 |
-
torchaudio.save(effect_path,
|
29 |
-
torchaudio.save(music_path,
|
30 |
|
31 |
return dialog_path, effect_path, music_path
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
if __name__ == "__main__":
|
47 |
demo.launch()
|
|
|
1 |
import os
|
2 |
+
import uuid
|
3 |
import torch
|
4 |
import torchaudio
|
5 |
+
import torchaudio.transforms as T
|
6 |
import gradio as gr
|
7 |
import look2hear.models
|
8 |
|
9 |
+
# Setup device
|
10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
|
12 |
+
# Load models
|
13 |
+
dnr_model = look2hear.models.TIGERDNR.from_pretrained("JusperLee/TIGER-DnR", cache_dir="cache")
|
14 |
+
dnr_model.to(device).eval()
|
15 |
|
16 |
+
sep_model = look2hear.models.TIGER.from_pretrained("JusperLee/TIGER-speech", cache_dir="cache")
|
17 |
+
sep_model.to(device).eval()
|
18 |
+
|
19 |
+
TARGET_SR = 16000
|
20 |
+
MAX_SPEAKERS = 4
|
21 |
+
|
22 |
+
# --- DnR Function ---
|
23 |
+
def separate_dnr(audio_file):
|
24 |
audio, sr = torchaudio.load(audio_file)
|
25 |
audio = audio.to(device)
|
26 |
|
27 |
with torch.no_grad():
|
28 |
+
dialog, effect, music = dnr_model(audio[None])
|
29 |
+
|
30 |
+
# Unique output folder
|
31 |
+
session_id = uuid.uuid4().hex[:8]
|
32 |
+
output_dir = os.path.join("output_dnr", session_id)
|
33 |
+
os.makedirs(output_dir, exist_ok=True)
|
34 |
|
35 |
+
dialog_path = os.path.join(output_dir, "dialog.wav")
|
36 |
+
effect_path = os.path.join(output_dir, "effect.wav")
|
37 |
+
music_path = os.path.join(output_dir, "music.wav")
|
|
|
38 |
|
39 |
+
torchaudio.save(dialog_path, dialog.cpu(), sr)
|
40 |
+
torchaudio.save(effect_path, effect.cpu(), sr)
|
41 |
+
torchaudio.save(music_path, music.cpu(), sr)
|
42 |
|
43 |
return dialog_path, effect_path, music_path
|
44 |
|
45 |
+
# --- Speaker Separation Function ---
|
46 |
+
def separate_speakers(audio_path):
|
47 |
+
waveform, original_sr = torchaudio.load(audio_path)
|
48 |
+
if original_sr != TARGET_SR:
|
49 |
+
waveform = T.Resample(orig_freq=original_sr, new_freq=TARGET_SR)(waveform)
|
50 |
+
|
51 |
+
if waveform.dim() == 1:
|
52 |
+
waveform = waveform.unsqueeze(0)
|
53 |
+
audio_input = waveform.unsqueeze(0).to(device)
|
54 |
+
|
55 |
+
with torch.no_grad():
|
56 |
+
ests_speech = sep_model(audio_input)
|
57 |
+
|
58 |
+
ests_speech = ests_speech.squeeze(0)
|
59 |
+
|
60 |
+
# Unique output folder
|
61 |
+
session_id = uuid.uuid4().hex[:8]
|
62 |
+
output_dir = os.path.join("output_sep", session_id)
|
63 |
+
os.makedirs(output_dir, exist_ok=True)
|
64 |
+
|
65 |
+
output_files = []
|
66 |
+
for i in range(ests_speech.shape[0]):
|
67 |
+
path = os.path.join(output_dir, f"speaker_{i+1}.wav")
|
68 |
+
torchaudio.save(path, ests_speech[i].cpu(), TARGET_SR)
|
69 |
+
output_files.append(path)
|
70 |
+
|
71 |
+
updates = []
|
72 |
+
for i in range(MAX_SPEAKERS):
|
73 |
+
if i < len(output_files):
|
74 |
+
updates.append(gr.update(value=output_files[i], visible=True, label=f"Speaker {i+1}"))
|
75 |
+
else:
|
76 |
+
updates.append(gr.update(value=None, visible=False))
|
77 |
+
return updates
|
78 |
+
|
79 |
+
# --- Gradio App ---
|
80 |
+
with gr.Blocks() as demo:
|
81 |
+
gr.Markdown("# Look2Hear Audio Processing Toolkit")
|
82 |
+
|
83 |
+
with gr.Tabs():
|
84 |
+
# --- Tab 1: DnR ---
|
85 |
+
with gr.Tab("Dialog/Effects/Music Separation (DnR)"):
|
86 |
+
gr.Markdown("### Separate Dialog, Effects, and Music from Mixed Audio")
|
87 |
+
|
88 |
+
dnr_input = gr.Audio(type="filepath", label="Upload Audio File")
|
89 |
+
dnr_button = gr.Button("Separate Audio")
|
90 |
+
|
91 |
+
dnr_output_dialog = gr.Audio(label="Dialog", type="filepath")
|
92 |
+
dnr_output_effect = gr.Audio(label="Effects", type="filepath")
|
93 |
+
dnr_output_music = gr.Audio(label="Music", type="filepath")
|
94 |
+
|
95 |
+
dnr_button.click(
|
96 |
+
fn=separate_dnr,
|
97 |
+
inputs=dnr_input,
|
98 |
+
outputs=[dnr_output_dialog, dnr_output_effect, dnr_output_music]
|
99 |
+
)
|
100 |
+
|
101 |
+
# --- Tab 2: Speaker Separation ---
|
102 |
+
with gr.Tab("Speaker Separation"):
|
103 |
+
gr.Markdown("### Separate Individual Speakers from Mixed Speech")
|
104 |
+
|
105 |
+
sep_input = gr.Audio(type="filepath", label="Upload Speech Audio")
|
106 |
+
sep_button = gr.Button("Separate Speakers")
|
107 |
+
|
108 |
+
gr.Markdown("#### Separated Speakers")
|
109 |
+
sep_outputs = []
|
110 |
+
for i in range(MAX_SPEAKERS):
|
111 |
+
sep_outputs.append(gr.Audio(label=f"Speaker {i+1}", visible=(i == 0), interactive=False))
|
112 |
+
|
113 |
+
sep_button.click(
|
114 |
+
fn=separate_speakers,
|
115 |
+
inputs=sep_input,
|
116 |
+
outputs=sep_outputs
|
117 |
+
)
|
118 |
|
119 |
if __name__ == "__main__":
|
120 |
demo.launch()
|