File size: 8,069 Bytes
d385f3b
143b464
c4c4663
d385f3b
 
c4c4663
d661acb
d385f3b
d232776
03e6ae6
d385f3b
 
0d0ce41
d385f3b
c4c4663
03e6ae6
 
c4c4663
b8fde75
c4c4663
 
03e6ae6
 
 
 
 
 
 
 
 
 
 
 
 
 
62c47fb
 
 
 
 
 
 
6d25e94
 
62c47fb
 
6d25e94
62c47fb
 
 
 
 
 
 
 
6d25e94
 
 
 
62c47fb
6d25e94
 
 
 
b090534
40f269b
 
62c47fb
 
 
9eaa2e4
6d25e94
d232776
c4c4663
d385f3b
 
 
 
c4c4663
 
 
 
 
d385f3b
03e6ae6
 
 
 
 
d385f3b
03e6ae6
 
 
d385f3b
03e6ae6
d385f3b
d232776
c4c4663
62c47fb
c4c4663
 
 
 
 
 
 
 
03e6ae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143b464
 
 
 
 
 
 
 
 
 
 
03e6ae6
6b11af7
 
62c47fb
6b11af7
 
 
 
 
 
 
 
b090534
6b11af7
 
62c47fb
 
6b11af7
 
62c47fb
 
 
03e6ae6
b3908ae
6b11af7
143b464
b090534
03e6ae6
c4c4663
d232776
d9599f2
c4c4663
5ce738f
 
 
 
 
 
 
 
 
 
 
c4c4663
03e6ae6
 
 
 
d232776
 
 
 
03e6ae6
 
d232776
03e6ae6
c4c4663
03e6ae6
d232776
 
 
 
03e6ae6
 
d232776
03e6ae6
 
 
 
 
c4c4663
03e6ae6
 
 
 
 
d385f3b
 
c4f5bac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
import subprocess
import uuid
import torch
import torchaudio
import torchaudio.transforms as T
import soundfile as sf
import gradio as gr
import spaces
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeAudioClip
import look2hear.models

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load models
dnr_model = look2hear.models.TIGERDNR.from_pretrained("JusperLee/TIGER-DnR", cache_dir="cache").to(device).eval()
sep_model = look2hear.models.TIGER.from_pretrained("JusperLee/TIGER-speech", cache_dir="cache").to(device).eval()

TARGET_SR = 44100
MAX_SPEAKERS = 4

def extract_audio_from_video(video_path):
    video = VideoFileClip(video_path)
    session_id = uuid.uuid4().hex[:8]
    audio_path = f"temp_audio/{session_id}.wav"
    os.makedirs("temp_audio", exist_ok=True)
    video.audio.write_audiofile(audio_path, fps=44100, verbose=False, logger=None)
    return audio_path, video

def attach_audio_to_video(original_video, audio_path, out_path):
    new_audio = AudioFileClip(audio_path)
    new_video = original_video.set_audio(new_audio)
    new_video.write_videofile(out_path, audio_codec='aac', verbose=False, logger=None)
    return out_path


def separate_speakers_core(audio_path):
    waveform, original_sr = torchaudio.load(audio_path)
    if original_sr != TARGET_SR:
        waveform = T.Resample(orig_freq=original_sr, new_freq=TARGET_SR)(waveform)

    if waveform.dim() == 1:
        waveform = waveform.unsqueeze(0)  # Ensure shape is (1, samples)
    audio_input = waveform.unsqueeze(0).to(device)  # Shape: (1, 1, samples)

    with torch.no_grad():
        ests_speech = sep_model(audio_input).squeeze(0)  # Shape: (num_speakers, samples)

    session_id = uuid.uuid4().hex[:8]
    output_dir = os.path.join("output_sep", session_id)
    os.makedirs(output_dir, exist_ok=True)

    output_files = []
    for i in range(ests_speech.shape[0]):
        path = os.path.join(output_dir, f"speaker_{i+1}.wav")
        speaker_waveform = ests_speech[i].cpu()

        if speaker_waveform.dim() == 1:
            speaker_waveform = speaker_waveform.unsqueeze(0)  # (1, samples)

        # Ensure correct dtype and save in a widely compatible format
        speaker_waveform = speaker_waveform.to(torch.float32)
        torchaudio.save(path, speaker_waveform, TARGET_SR, format="wav", encoding="PCM_S", bits_per_sample=16)
        output_files.append(path)

    print(output_files)

    return output_files




@spaces.GPU()
def separate_dnr(audio_file):
    audio, sr = torchaudio.load(audio_file)
    audio = audio.to(device)

    with torch.no_grad():
        dialog, effect, music = dnr_model(audio[None])

    session_id = uuid.uuid4().hex[:8]
    output_dir = os.path.join("output_dnr", session_id)
    os.makedirs(output_dir, exist_ok=True)

    paths = {
        "dialog": os.path.join(output_dir, "dialog.wav"),
        "effect": os.path.join(output_dir, "effect.wav"),
        "music": os.path.join(output_dir, "music.wav"),
    }

    torchaudio.save(paths["dialog"], dialog.cpu(), sr)
    torchaudio.save(paths["effect"], effect.cpu(), sr)
    torchaudio.save(paths["music"], music.cpu(), sr)

    return paths["dialog"], paths["effect"], paths["music"]

@spaces.GPU()
def separate_speakers(audio_path):
    output_files = separate_speakers_core(audio_path)
    updates = []
    for i in range(MAX_SPEAKERS):
        if i < len(output_files):
            updates.append(gr.update(value=output_files[i], visible=True, label=f"Speaker {i+1}"))
        else:
            updates.append(gr.update(value=None, visible=False))
    return updates

@spaces.GPU()
def separate_dnr_video(video_path):
    audio_path, video = extract_audio_from_video(video_path)
    dialog_path, effect_path, music_path = separate_dnr(audio_path)

    session_id = uuid.uuid4().hex[:8]
    output_dir = os.path.join("output_dnr_video", session_id)
    os.makedirs(output_dir, exist_ok=True)

    dialog_video = attach_audio_to_video(video, dialog_path, os.path.join(output_dir, "dialog_video.mp4"))
    effect_video = attach_audio_to_video(video, effect_path, os.path.join(output_dir, "effect_video.mp4"))
    music_video = attach_audio_to_video(video, music_path, os.path.join(output_dir, "music_video.mp4"))

    return dialog_video, effect_video, music_video

def convert_to_ffmpeg_friendly(input_wav, output_wav):
    subprocess.run([
        "ffmpeg", "-y",
        "-i", input_wav,
        "-ar", str(TARGET_SR),
        "-ac", "1",
        "-sample_fmt", "s16",
        output_wav
    ], check=True)


@spaces.GPU()
def separate_speakers_video(video_path):
    audio_path, video = extract_audio_from_video(video_path)
    output_files = separate_speakers_core(audio_path)

    session_id = uuid.uuid4().hex[:8]
    output_dir = os.path.join("output_sep_video", session_id)
    os.makedirs(output_dir, exist_ok=True)

    output_videos = []
    for i, audio_file in enumerate(output_files):
        speaker_video_path = os.path.join(output_dir, f"speaker_{i+1}_video.mp4")
        video_with_sep_audio = attach_audio_to_video(video, audio_file, speaker_video_path)
        output_videos.append(video_with_sep_audio)

    updates = []
    for i in range(MAX_SPEAKERS):
        if i < len(output_videos):
            updates.append(gr.update(value=output_videos[i], visible=True, label=f"Speaker {i+1}"))
        else:
            updates.append(gr.update(value=None, visible=False))
    return updates





# --- Gradio UI ---
with gr.Blocks() as demo:
    gr.Markdown("# TIGER: Time-frequency Interleaved Gain Extraction and Reconstruction for Efficient Speech Separation")
    gr.Markdown("TIGER is a lightweight model for speech separation which effectively extracts key acoustic features through frequency band-split, multi-scale and full-frequency-frame modeling.")

    gr.HTML("""
            <div style="display:flex;column-gap:4px;">
                <a href="https://cslikai.cn/TIGER/">
                    <img src='https://img.shields.io/badge/Project-Page-green'>
                </a> 
    			
                <a href="https://huggingface.co/spaces/fffiloni/TIGER-audio-extraction?duplicate=true">
    				<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
    			</a>	
            </div>
        """)

    with gr.Tabs():
        with gr.Tab("Audio DnR"):
            dnr_input = gr.Audio(type="filepath", label="Upload Audio")
            dnr_btn = gr.Button("Separate")
            gr.Examples(
                examples = ["./test/test_mixture_466.wav"],
                inputs = dnr_input
            )
            dnr_output = [gr.Audio(label=l) for l in ["Dialog", "Effects", "Music"]]
            dnr_btn.click(separate_dnr, inputs=dnr_input, outputs=dnr_output)

        with gr.Tab("Audio Speaker Separation"):
            sep_input = gr.Audio(type="filepath", label="Upload Speech Audio")
            sep_btn = gr.Button("Separate Speakers")
            gr.Examples(
                examples = ["./test/mix.wav"],
                inputs = sep_input
            )
            sep_outputs = [gr.Audio(label=f"Speaker {i+1}", visible=(i==0)) for i in range(MAX_SPEAKERS)]
            sep_btn.click(separate_speakers, inputs=sep_input, outputs=sep_outputs)

        with gr.Tab("Video DnR"):
            vdnr_input = gr.Video(label="Upload Video")
            vdnr_btn = gr.Button("Separate Audio Tracks")
            vdnr_output = [gr.Video(label=l) for l in ["Dialog Video", "Effects Video", "Music Video"]]
            vdnr_btn.click(separate_dnr_video, inputs=vdnr_input, outputs=vdnr_output)

        with gr.Tab("Video Speaker Separation"):
            vsep_input = gr.Video(label="Upload Video")
            vsep_btn = gr.Button("Separate Speakers")
            vsep_outputs = [gr.Video(label=f"Speaker {i+1}", visible=(i==0)) for i in range(MAX_SPEAKERS)]
            vsep_btn.click(separate_speakers_video, inputs=vsep_input, outputs=vsep_outputs)

if __name__ == "__main__":
    demo.launch(ssr_mode=False)