Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,069 Bytes
d385f3b 143b464 c4c4663 d385f3b c4c4663 d661acb d385f3b d232776 03e6ae6 d385f3b 0d0ce41 d385f3b c4c4663 03e6ae6 c4c4663 b8fde75 c4c4663 03e6ae6 62c47fb 6d25e94 62c47fb 6d25e94 62c47fb 6d25e94 62c47fb 6d25e94 b090534 40f269b 62c47fb 9eaa2e4 6d25e94 d232776 c4c4663 d385f3b c4c4663 d385f3b 03e6ae6 d385f3b 03e6ae6 d385f3b 03e6ae6 d385f3b d232776 c4c4663 62c47fb c4c4663 03e6ae6 143b464 03e6ae6 6b11af7 62c47fb 6b11af7 b090534 6b11af7 62c47fb 6b11af7 62c47fb 03e6ae6 b3908ae 6b11af7 143b464 b090534 03e6ae6 c4c4663 d232776 d9599f2 c4c4663 5ce738f c4c4663 03e6ae6 d232776 03e6ae6 d232776 03e6ae6 c4c4663 03e6ae6 d232776 03e6ae6 d232776 03e6ae6 c4c4663 03e6ae6 d385f3b c4f5bac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os
import subprocess
import uuid
import torch
import torchaudio
import torchaudio.transforms as T
import soundfile as sf
import gradio as gr
import spaces
from moviepy.editor import VideoFileClip, AudioFileClip, CompositeAudioClip
import look2hear.models
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load models
dnr_model = look2hear.models.TIGERDNR.from_pretrained("JusperLee/TIGER-DnR", cache_dir="cache").to(device).eval()
sep_model = look2hear.models.TIGER.from_pretrained("JusperLee/TIGER-speech", cache_dir="cache").to(device).eval()
TARGET_SR = 44100
MAX_SPEAKERS = 4
def extract_audio_from_video(video_path):
video = VideoFileClip(video_path)
session_id = uuid.uuid4().hex[:8]
audio_path = f"temp_audio/{session_id}.wav"
os.makedirs("temp_audio", exist_ok=True)
video.audio.write_audiofile(audio_path, fps=44100, verbose=False, logger=None)
return audio_path, video
def attach_audio_to_video(original_video, audio_path, out_path):
new_audio = AudioFileClip(audio_path)
new_video = original_video.set_audio(new_audio)
new_video.write_videofile(out_path, audio_codec='aac', verbose=False, logger=None)
return out_path
def separate_speakers_core(audio_path):
waveform, original_sr = torchaudio.load(audio_path)
if original_sr != TARGET_SR:
waveform = T.Resample(orig_freq=original_sr, new_freq=TARGET_SR)(waveform)
if waveform.dim() == 1:
waveform = waveform.unsqueeze(0) # Ensure shape is (1, samples)
audio_input = waveform.unsqueeze(0).to(device) # Shape: (1, 1, samples)
with torch.no_grad():
ests_speech = sep_model(audio_input).squeeze(0) # Shape: (num_speakers, samples)
session_id = uuid.uuid4().hex[:8]
output_dir = os.path.join("output_sep", session_id)
os.makedirs(output_dir, exist_ok=True)
output_files = []
for i in range(ests_speech.shape[0]):
path = os.path.join(output_dir, f"speaker_{i+1}.wav")
speaker_waveform = ests_speech[i].cpu()
if speaker_waveform.dim() == 1:
speaker_waveform = speaker_waveform.unsqueeze(0) # (1, samples)
# Ensure correct dtype and save in a widely compatible format
speaker_waveform = speaker_waveform.to(torch.float32)
torchaudio.save(path, speaker_waveform, TARGET_SR, format="wav", encoding="PCM_S", bits_per_sample=16)
output_files.append(path)
print(output_files)
return output_files
@spaces.GPU()
def separate_dnr(audio_file):
audio, sr = torchaudio.load(audio_file)
audio = audio.to(device)
with torch.no_grad():
dialog, effect, music = dnr_model(audio[None])
session_id = uuid.uuid4().hex[:8]
output_dir = os.path.join("output_dnr", session_id)
os.makedirs(output_dir, exist_ok=True)
paths = {
"dialog": os.path.join(output_dir, "dialog.wav"),
"effect": os.path.join(output_dir, "effect.wav"),
"music": os.path.join(output_dir, "music.wav"),
}
torchaudio.save(paths["dialog"], dialog.cpu(), sr)
torchaudio.save(paths["effect"], effect.cpu(), sr)
torchaudio.save(paths["music"], music.cpu(), sr)
return paths["dialog"], paths["effect"], paths["music"]
@spaces.GPU()
def separate_speakers(audio_path):
output_files = separate_speakers_core(audio_path)
updates = []
for i in range(MAX_SPEAKERS):
if i < len(output_files):
updates.append(gr.update(value=output_files[i], visible=True, label=f"Speaker {i+1}"))
else:
updates.append(gr.update(value=None, visible=False))
return updates
@spaces.GPU()
def separate_dnr_video(video_path):
audio_path, video = extract_audio_from_video(video_path)
dialog_path, effect_path, music_path = separate_dnr(audio_path)
session_id = uuid.uuid4().hex[:8]
output_dir = os.path.join("output_dnr_video", session_id)
os.makedirs(output_dir, exist_ok=True)
dialog_video = attach_audio_to_video(video, dialog_path, os.path.join(output_dir, "dialog_video.mp4"))
effect_video = attach_audio_to_video(video, effect_path, os.path.join(output_dir, "effect_video.mp4"))
music_video = attach_audio_to_video(video, music_path, os.path.join(output_dir, "music_video.mp4"))
return dialog_video, effect_video, music_video
def convert_to_ffmpeg_friendly(input_wav, output_wav):
subprocess.run([
"ffmpeg", "-y",
"-i", input_wav,
"-ar", str(TARGET_SR),
"-ac", "1",
"-sample_fmt", "s16",
output_wav
], check=True)
@spaces.GPU()
def separate_speakers_video(video_path):
audio_path, video = extract_audio_from_video(video_path)
output_files = separate_speakers_core(audio_path)
session_id = uuid.uuid4().hex[:8]
output_dir = os.path.join("output_sep_video", session_id)
os.makedirs(output_dir, exist_ok=True)
output_videos = []
for i, audio_file in enumerate(output_files):
speaker_video_path = os.path.join(output_dir, f"speaker_{i+1}_video.mp4")
video_with_sep_audio = attach_audio_to_video(video, audio_file, speaker_video_path)
output_videos.append(video_with_sep_audio)
updates = []
for i in range(MAX_SPEAKERS):
if i < len(output_videos):
updates.append(gr.update(value=output_videos[i], visible=True, label=f"Speaker {i+1}"))
else:
updates.append(gr.update(value=None, visible=False))
return updates
# --- Gradio UI ---
with gr.Blocks() as demo:
gr.Markdown("# TIGER: Time-frequency Interleaved Gain Extraction and Reconstruction for Efficient Speech Separation")
gr.Markdown("TIGER is a lightweight model for speech separation which effectively extracts key acoustic features through frequency band-split, multi-scale and full-frequency-frame modeling.")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://cslikai.cn/TIGER/">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/TIGER-audio-extraction?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
</div>
""")
with gr.Tabs():
with gr.Tab("Audio DnR"):
dnr_input = gr.Audio(type="filepath", label="Upload Audio")
dnr_btn = gr.Button("Separate")
gr.Examples(
examples = ["./test/test_mixture_466.wav"],
inputs = dnr_input
)
dnr_output = [gr.Audio(label=l) for l in ["Dialog", "Effects", "Music"]]
dnr_btn.click(separate_dnr, inputs=dnr_input, outputs=dnr_output)
with gr.Tab("Audio Speaker Separation"):
sep_input = gr.Audio(type="filepath", label="Upload Speech Audio")
sep_btn = gr.Button("Separate Speakers")
gr.Examples(
examples = ["./test/mix.wav"],
inputs = sep_input
)
sep_outputs = [gr.Audio(label=f"Speaker {i+1}", visible=(i==0)) for i in range(MAX_SPEAKERS)]
sep_btn.click(separate_speakers, inputs=sep_input, outputs=sep_outputs)
with gr.Tab("Video DnR"):
vdnr_input = gr.Video(label="Upload Video")
vdnr_btn = gr.Button("Separate Audio Tracks")
vdnr_output = [gr.Video(label=l) for l in ["Dialog Video", "Effects Video", "Music Video"]]
vdnr_btn.click(separate_dnr_video, inputs=vdnr_input, outputs=vdnr_output)
with gr.Tab("Video Speaker Separation"):
vsep_input = gr.Video(label="Upload Video")
vsep_btn = gr.Button("Separate Speakers")
vsep_outputs = [gr.Video(label=f"Speaker {i+1}", visible=(i==0)) for i in range(MAX_SPEAKERS)]
vsep_btn.click(separate_speakers_video, inputs=vsep_input, outputs=vsep_outputs)
if __name__ == "__main__":
demo.launch(ssr_mode=False) |