File size: 15,980 Bytes
c4a81c0
 
 
ba0d504
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a81c0
6c0d568
e65f811
a4f8a15
 
6c0d568
1eecd17
eee8ee3
6c0d568
eee8ee3
0479145
6c0d568
fbb77f2
 
fd0d56e
 
 
 
 
 
 
 
 
 
 
 
 
eee8ee3
e61c4ed
eee8ee3
0479145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62402d2
0479145
4d3675e
eee8ee3
 
 
 
 
3b79011
 
 
 
eee8ee3
3b79011
935805a
eee8ee3
 
935805a
 
 
 
 
 
 
 
3b79011
 
935805a
3b79011
935805a
eee8ee3
935805a
 
eee8ee3
 
 
 
aafe80a
 
 
 
 
 
 
 
0479145
6c0d568
 
 
0479145
 
 
6c0d568
0479145
6c0d568
 
0479145
 
6c0d568
 
 
0479145
6c0d568
 
 
 
 
 
0c327c7
 
 
 
6c0d568
0c327c7
6c0d568
 
0c327c7
e8b186a
6c0d568
 
 
e8b186a
6c0d568
 
 
 
 
 
 
0c327c7
 
 
 
 
6c0d568
5e4c885
 
 
 
 
 
 
 
 
 
 
0c327c7
5e4c885
0c327c7
 
 
 
 
6c0d568
f2010da
0479145
a4918b7
 
 
 
b308d40
a4918b7
 
b308d40
a4918b7
 
b308d40
a4918b7
f2010da
 
a4918b7
f2010da
 
 
 
 
0479145
 
 
 
f2010da
 
0479145
 
 
 
 
 
 
6c0d568
0479145
 
 
 
c4a81c0
6c0d568
0479145
 
 
 
 
6d8faa9
0479145
 
 
 
 
 
 
 
 
6c0d568
0479145
 
 
 
 
 
 
 
f2010da
 
0479145
6c0d568
f2010da
6c0d568
fd0d56e
f2010da
 
 
28dd534
f82120a
 
62402d2
28dd534
0479145
 
 
 
 
 
6c0d568
0479145
 
 
 
 
 
 
 
 
28dd534
 
 
 
0479145
 
 
 
 
 
 
6c0d568
0479145
 
 
 
 
 
 
 
 
6c0d568
fbb77f2
 
28dd534
 
 
fbb77f2
fd0d56e
 
fbb77f2
 
 
 
 
28dd534
6c0d568
 
eee8ee3
 
 
f2010da
e61c4ed
 
6c0d568
0479145
 
4d3675e
 
0479145
 
4d3675e
 
 
eee8ee3
 
0479145
935805a
 
 
28dd534
935805a
0479145
51c3be9
 
 
935805a
 
e6603c1
 
28dd534
fd0d56e
28dd534
 
 
0479145
eee8ee3
51c3be9
 
0479145
f2010da
0c327c7
 
 
0479145
 
 
f2010da
e8b186a
51c3be9
eee8ee3
0c327c7
e8b186a
 
 
 
0c327c7
eee8ee3
6c0d568
 
f2010da
 
 
 
 
 
fd0d56e
28dd534
6c0d568
e8b186a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import subprocess

# Define the command to be executed
command = ["python", "setup.py", "build_ext", "--inplace"]

# Execute the command
result = subprocess.run(command, capture_output=True, text=True)

# Print the output and error (if any)
print("Output:\n", result.stdout)
print("Errors:\n", result.stderr)

# Check if the command was successful
if result.returncode == 0:
    print("Command executed successfully.")
else:
    print("Command failed with return code:", result.returncode)

import gradio as gr
from datetime import datetime
import os
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter
from sam2.build_sam import build_sam2_video_predictor

from moviepy.editor import ImageSequenceClip

def get_video_fps(video_path):
    # Open the video file
    cap = cv2.VideoCapture(video_path)
    
    if not cap.isOpened():
        print("Error: Could not open video.")
        return None
    
    # Get the FPS of the video
    fps = cap.get(cv2.CAP_PROP_FPS)

    return fps

def preprocess_image(image):
    return image, gr.State([]), gr.State([]), image, gr.State()

def preprocess_video_in(video_path):

    # Generate a unique ID based on the current date and time
    unique_id = datetime.now().strftime('%Y%m%d%H%M%S')
    output_dir = f'frames_{unique_id}'
    
    # Create the output directory
    os.makedirs(output_dir, exist_ok=True)
    
    # Open the video file
    cap = cv2.VideoCapture(video_path)
    
    if not cap.isOpened():
        print("Error: Could not open video.")
        return None

    frame_number = 0
    first_frame = None
    
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        
        # Format the frame filename as '00000.jpg'
        frame_filename = os.path.join(output_dir, f'{frame_number:05d}.jpg')
        
        # Save the frame as a JPEG file
        cv2.imwrite(frame_filename, frame)
        
        # Store the first frame
        if frame_number == 0:
            first_frame = frame_filename
        
        frame_number += 1
    
    # Release the video capture object
    cap.release()

    # 'image' is the first frame extracted from video_in
    return first_frame, gr.State([]), gr.State([]), first_frame, first_frame, output_dir, None, None

def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData):
    print(f"You selected {evt.value} at {evt.index} from {evt.target}")

    tracking_points.value.append(evt.index)
    print(f"TRACKING POINT: {tracking_points.value}")

    if point_type == "include":
        trackings_input_label.value.append(1)
    elif point_type == "exclude":
        trackings_input_label.value.append(0)
    print(f"TRACKING INPUT LABEL: {trackings_input_label.value}")
    
    # Open the image and get its dimensions
    transparent_background = Image.open(first_frame_path).convert('RGBA')
    w, h = transparent_background.size
    
    # Define the circle radius as a fraction of the smaller dimension
    fraction = 0.02  # You can adjust this value as needed
    radius = int(fraction * min(w, h))
    
    # Create a transparent layer to draw on
    transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
    
    for index, track in enumerate(tracking_points.value):
        if trackings_input_label.value[index] == 1:
            cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
        else:
            cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)

    # Convert the transparent layer back to an image
    transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
    selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
    
    return tracking_points, trackings_input_label, selected_point_map
    
# use bfloat16 for the entire notebook
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()

if torch.cuda.get_device_properties(0).major >= 8:
    # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True
    
def show_mask(mask, ax, obj_id=None, random_color=False):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        cmap = plt.get_cmap("tab10")
        cmap_idx = 0 if obj_id is None else obj_id
        color = np.array([*cmap(cmap_idx)[:3], 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)


def show_points(coords, labels, ax, marker_size=200):
    pos_points = coords[labels==1]
    neg_points = coords[labels==0]
    ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
    ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)

def show_box(box, ax):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))    

def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_labels=None, borders=True):
    combined_images = []  # List to store filenames of images with masks overlaid
    mask_images = []      # List to store filenames of separate mask images

    for i, (mask, score) in enumerate(zip(masks, scores)):
        # ---- Original Image with Mask Overlaid ----
        plt.figure(figsize=(10, 10))
        plt.imshow(image)
        show_mask(mask, plt.gca(), borders=borders)  # Draw the mask with borders
        """
        if point_coords is not None:
            assert input_labels is not None
            show_points(point_coords, input_labels, plt.gca())
        """
        if box_coords is not None:
            show_box(box_coords, plt.gca())
        if len(scores) > 1:
            plt.title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
        plt.axis('off')

        # Save the figure as a JPG file
        combined_filename = f"combined_image_{i+1}.jpg"
        plt.savefig(combined_filename, format='jpg', bbox_inches='tight')
        combined_images.append(combined_filename)

        plt.close()  # Close the figure to free up memory

        # ---- Separate Mask Image (White Mask on Black Background) ----
        # Create a black image
        mask_image = np.zeros_like(image, dtype=np.uint8)
        
        # The mask is a binary array where the masked area is 1, else 0.
        # Convert the mask to a white color in the mask_image
        mask_layer = (mask > 0).astype(np.uint8) * 255
        for c in range(3):  # Assuming RGB, repeat mask for all channels
            mask_image[:, :, c] = mask_layer

        # Save the mask image
        mask_filename = f"mask_image_{i+1}.png"
        Image.fromarray(mask_image).save(mask_filename)
        mask_images.append(mask_filename)

        plt.close()  # Close the figure to free up memory

    return combined_images, mask_images

def load_model(checkpoint):
    # Load model accordingly to user's choice
    if checkpoint == "tiny":
        sam2_checkpoint = "./checkpoints/sam2_hiera_tiny.pt"
        model_cfg = "sam2_hiera_t.yaml"
    elif checkpoint == "samll":
        sam2_checkpoint = "./checkpoints/sam2_hiera_small.pt"
        model_cfg = "sam2_hiera_s.yaml"
    elif checkpoint == "base-plus":
        sam2_checkpoint = "./checkpoints/sam2_hiera_base_plus.pt"
        model_cfg = "sam2_hiera_b+.yaml"
    elif checkpoint == "large":
        sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
        model_cfg = "sam2_hiera_l.yaml"

    return sam2_checkpoint, model_cfg
    
def sam_process(input_first_frame_image, checkpoint, tracking_points, trackings_input_label, video_frames_dir):
    # 1. We need to preprocess the video and store frames in the right directory
    # — Penser à utiliser un ID unique pour le dossier
 
    sam2_checkpoint, model_cfg = load_model(checkpoint)
    predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)

    
    # `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg`
    print(f"STATE FRAME OUTPUT DIRECTORY: {video_frames_dir}")
    video_dir = video_frames_dir
    
    # scan all the JPEG frame names in this directory
    frame_names = [
        p for p in os.listdir(video_dir)
        if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
    ]
    frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
    
    
    inference_state = predictor.init_state(video_path=video_dir)

    # segment and track one object
    # predictor.reset_state(inference_state) # if any previous tracking, reset

    # Add new point
    ann_frame_idx = 0  # the frame index we interact with
    ann_obj_id = 1  # give a unique id to each object we interact with (it can be any integers)
    
    # Let's add a positive click at (x, y) = (210, 350) to get started
    points = np.array(tracking_points.value, dtype=np.float32)
    # for labels, `1` means positive click and `0` means negative click
    labels = np.array(trackings_input_label.value, np.int32)
    _, out_obj_ids, out_mask_logits = predictor.add_new_points(
        inference_state=inference_state,
        frame_idx=ann_frame_idx,
        obj_id=ann_obj_id,
        points=points,
        labels=labels,
    )

    # Create the plot
    plt.figure(figsize=(12, 8))
    plt.title(f"frame {ann_frame_idx}")
    plt.imshow(Image.open(os.path.join(video_dir, frame_names[ann_frame_idx])))
    show_points(points, labels, plt.gca())
    show_mask((out_mask_logits[0] > 0.0).cpu().numpy(), plt.gca(), obj_id=out_obj_ids[0])
    
    # Save the plot as a JPG file
    first_frame_output_filename = "output_first_frame.jpg"
    plt.savefig(first_frame_output_filename, format='jpg')
    plt.close()

    return "output_first_frame.jpg", frame_names, inference_state

def propagate_to_all(video_in, video_incheckpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type):   
    #### PROPAGATION ####
    sam2_checkpoint, model_cfg = load_model(checkpoint)
    predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
    
    inference_state = stored_inference_state
    frame_names = stored_frame_names
    video_dir = video_frames_dir
    
    # Define a directory to save the JPEG images
    frames_output_dir = "frames_output_images"
    os.makedirs(frames_output_dir, exist_ok=True)
    
    # Initialize a list to store file paths of saved images
    jpeg_images = []

    # run propagation throughout the video and collect the results in a dict
    video_segments = {}  # video_segments contains the per-frame segmentation results
    for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
        video_segments[out_frame_idx] = {
            out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
            for i, out_obj_id in enumerate(out_obj_ids)
        }
    
    # render the segmentation results every few frames
    if vis_frame_type == "check":
        vis_frame_stride = 15
    elif vis_frame_type == "render":
        vis_frame_stride = 1
    plt.close("all")
    for out_frame_idx in range(0, len(frame_names), vis_frame_stride):
        plt.figure(figsize=(6, 4))
        plt.title(f"frame {out_frame_idx}")
        plt.imshow(Image.open(os.path.join(video_dir, frame_names[out_frame_idx])))
        for out_obj_id, out_mask in video_segments[out_frame_idx].items():
            show_mask(out_mask, plt.gca(), obj_id=out_obj_id)

        # Define the output filename and save the figure as a JPEG file
        output_filename = os.path.join(frames_output_dir, f"frame_{out_frame_idx}.jpg")
        plt.savefig(output_filename, format='jpg')
        
        # Append the file path to the list
        jpeg_images.append(output_filename)
    
        # Close the plot
        plt.close()

    

    if vis_frame_type == "check":
        return gr.update(value=jpeg_images, visible=True), gr.update(visible=False, value=None)
    elif vis_frame_type == "render":
        # Create a video clip from the image sequence
        original_fps = get_video_fps(video_in)
        fps = original_fps  # Frames per second
        clip = ImageSequenceClip(jpeg_images, fps=fps)
        # Write the result to a file
        final_vid_output_path = "output_video.mp4"
        video.write_videofile(output_path, codec='libx264')
        return gr.update(visible=False, value=None), gr.update(value=final_vid_output_path, visible=True)
    

with gr.Blocks() as demo:
    first_frame_path = gr.State()
    tracking_points = gr.State([])
    trackings_input_label = gr.State([])
    video_frames_dir = gr.State()
    stored_inference_state = gr.State()
    stored_frame_names = gr.State()
    with gr.Column():
        gr.Markdown("# SAM2 Video Predictor")
        gr.Markdown("This is a simple demo for video segmentation with SAM2.")
        gr.Markdown("""Instructions: 
        
        1. Upload your video 
        2. With 'include' point type selected, Click on the object to mask on first frame
        3. Switch to 'exclude' point type if you want to specify an area to avoid
        4. Submit !
        """)
        with gr.Row():
            with gr.Column():
                input_first_frame_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False)                 
                points_map = gr.Image(
                    label="points map", 
                    type="filepath",
                    interactive=False
                )
                video_in = gr.Video(label="Video IN")
                with gr.Row():
                    point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include")
                    clear_points_btn = gr.Button("Clear Points")
                checkpoint = gr.Dropdown(label="Checkpoint", choices=["tiny", "small", "base-plus", "large"], value="tiny")
                submit_btn = gr.Button("Submit")
            with gr.Column():
                output_result = gr.Image()
                with gr.Row():
                    vis_frame_type = gr.Radio(choices=["check", "render"], value="check", scale=2)
                    propagate_btn = gr.Button("Propagate", scale=1)
                output_propagated = gr.Gallery(visible=False)
                output_video = gr.Video(visible=False)
                # output_result_mask = gr.Image()
    
    clear_points_btn.click(
        fn = preprocess_image,
        inputs = input_first_frame_image, 
        outputs = [first_frame_path, tracking_points, trackings_input_label, points_map, stored_inference_state],
        queue=False
    )
    
    video_in.upload(
        fn = preprocess_video_in, 
        inputs = [video_in], 
        outputs = [first_frame_path, tracking_points, trackings_input_label, input_first_frame_image, points_map, video_frames_dir, stored_inference_state, stored_frame_names],
        queue = False
    )

    points_map.select(
        fn = get_point, 
        inputs = [point_type, tracking_points, trackings_input_label, first_frame_path], 
        outputs = [tracking_points, trackings_input_label, points_map], 
        queue = False
    )

    submit_btn.click(
        fn = sam_process,
        inputs = [input_first_frame_image, checkpoint, tracking_points, trackings_input_label, video_frames_dir],
        outputs = [output_result, stored_frame_names, stored_inference_state]
    )

    propagate_btn.click(
        fn = propagate_to_all,
        inputs = [video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type],
        outputs = [output_propagated, output_video]
    )

demo.launch(show_api=False, show_error=True)