Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -7,12 +7,53 @@ import numpy as np
|
|
7 |
import cv2
|
8 |
import matplotlib.pyplot as plt
|
9 |
from PIL import Image, ImageFilter
|
10 |
-
from sam2.build_sam import
|
11 |
-
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
12 |
|
13 |
def preprocess_image(image):
|
14 |
return image, gr.State([]), gr.State([]), image
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData):
|
17 |
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
|
18 |
|
@@ -56,27 +97,23 @@ if torch.cuda.get_device_properties(0).major >= 8:
|
|
56 |
torch.backends.cuda.matmul.allow_tf32 = True
|
57 |
torch.backends.cudnn.allow_tf32 = True
|
58 |
|
59 |
-
def show_mask(mask, ax,
|
60 |
if random_color:
|
61 |
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
62 |
else:
|
63 |
-
|
|
|
|
|
64 |
h, w = mask.shape[-2:]
|
65 |
-
|
66 |
-
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
67 |
-
if borders:
|
68 |
-
import cv2
|
69 |
-
contours, _ = cv2.findContours(mask,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
70 |
-
# Try to smooth contours
|
71 |
-
contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
|
72 |
-
mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2)
|
73 |
ax.imshow(mask_image)
|
74 |
|
75 |
-
|
|
|
76 |
pos_points = coords[labels==1]
|
77 |
neg_points = coords[labels==0]
|
78 |
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
|
79 |
-
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
|
80 |
|
81 |
def show_box(box, ax):
|
82 |
x0, y0 = box[0], box[1]
|
@@ -130,10 +167,12 @@ def show_masks(image, masks, scores, point_coords=None, box_coords=None, input_l
|
|
130 |
return combined_images, mask_images
|
131 |
|
132 |
|
133 |
-
def sam_process(
|
134 |
-
|
135 |
-
|
136 |
|
|
|
|
|
137 |
if checkpoint == "tiny":
|
138 |
sam2_checkpoint = "./checkpoints/sam2_hiera_tiny.pt"
|
139 |
model_cfg = "sam2_hiera_t.yaml"
|
@@ -147,56 +186,118 @@ def sam_process(input_image, checkpoint, tracking_points, trackings_input_label)
|
|
147 |
sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
|
148 |
model_cfg = "sam2_hiera_l.yaml"
|
149 |
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
-
|
|
|
|
|
|
|
|
|
153 |
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
|
|
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
masks = masks[sorted_ind]
|
168 |
-
scores = scores[sorted_ind]
|
169 |
-
logits = logits[sorted_ind]
|
170 |
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
-
return
|
177 |
|
178 |
with gr.Blocks() as demo:
|
179 |
first_frame_path = gr.State()
|
180 |
tracking_points = gr.State([])
|
181 |
trackings_input_label = gr.State([])
|
182 |
with gr.Column():
|
183 |
-
gr.Markdown("# SAM2
|
184 |
-
gr.Markdown("This is a simple demo for
|
185 |
gr.Markdown("""Instructions:
|
186 |
|
187 |
-
1. Upload your
|
188 |
-
2. With 'include' point type selected, Click on the object to mask
|
189 |
3. Switch to 'exclude' point type if you want to specify an area to avoid
|
190 |
4. Submit !
|
191 |
""")
|
192 |
with gr.Row():
|
193 |
with gr.Column():
|
194 |
-
|
195 |
points_map = gr.Image(
|
196 |
label="points map",
|
197 |
type="filepath",
|
198 |
interactive=True
|
199 |
)
|
|
|
200 |
with gr.Row():
|
201 |
point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include")
|
202 |
clear_points_btn = gr.Button("Clear Points")
|
@@ -204,19 +305,19 @@ with gr.Blocks() as demo:
|
|
204 |
submit_btn = gr.Button("Submit")
|
205 |
with gr.Column():
|
206 |
output_result = gr.Image()
|
207 |
-
output_result_mask = gr.Image()
|
208 |
|
209 |
clear_points_btn.click(
|
210 |
fn = preprocess_image,
|
211 |
-
inputs =
|
212 |
outputs = [first_frame_path, tracking_points, trackings_input_label, points_map],
|
213 |
queue=False
|
214 |
)
|
215 |
|
216 |
-
|
217 |
-
fn =
|
218 |
-
inputs = [
|
219 |
-
outputs = [first_frame_path, tracking_points, trackings_input_label,
|
220 |
queue = False
|
221 |
)
|
222 |
|
@@ -229,8 +330,8 @@ with gr.Blocks() as demo:
|
|
229 |
|
230 |
submit_btn.click(
|
231 |
fn = sam_process,
|
232 |
-
inputs = [
|
233 |
-
outputs = [output_result
|
234 |
)
|
235 |
|
236 |
demo.launch(show_api=False, show_error=True)
|
|
|
7 |
import cv2
|
8 |
import matplotlib.pyplot as plt
|
9 |
from PIL import Image, ImageFilter
|
10 |
+
from sam2.build_sam import build_sam2_video_predictor
|
|
|
11 |
|
12 |
def preprocess_image(image):
|
13 |
return image, gr.State([]), gr.State([]), image
|
14 |
|
15 |
+
def preprocess_video_in(video_path):
|
16 |
+
|
17 |
+
# Generate a unique ID based on the current date and time
|
18 |
+
unique_id = datetime.now().strftime('%Y%m%d%H%M%S')
|
19 |
+
output_dir = f'frames_{unique_id}'
|
20 |
+
|
21 |
+
# Create the output directory
|
22 |
+
os.makedirs(output_dir, exist_ok=True)
|
23 |
+
|
24 |
+
# Open the video file
|
25 |
+
cap = cv2.VideoCapture(video_path)
|
26 |
+
|
27 |
+
if not cap.isOpened():
|
28 |
+
print("Error: Could not open video.")
|
29 |
+
return None
|
30 |
+
|
31 |
+
frame_number = 0
|
32 |
+
first_frame = None
|
33 |
+
|
34 |
+
while True:
|
35 |
+
ret, frame = cap.read()
|
36 |
+
if not ret:
|
37 |
+
break
|
38 |
+
|
39 |
+
# Format the frame filename as '00000.jpg'
|
40 |
+
frame_filename = os.path.join(output_dir, f'{frame_number:05d}.jpg')
|
41 |
+
|
42 |
+
# Save the frame as a JPEG file
|
43 |
+
cv2.imwrite(frame_filename, frame)
|
44 |
+
|
45 |
+
# Store the first frame
|
46 |
+
if frame_number == 0:
|
47 |
+
first_frame = frame_filename
|
48 |
+
|
49 |
+
frame_number += 1
|
50 |
+
|
51 |
+
# Release the video capture object
|
52 |
+
cap.release()
|
53 |
+
|
54 |
+
# 'image' is the first frame extracted from video_in
|
55 |
+
return first_frame, gr.State([]), gr.State([]), first_frame, first_frame
|
56 |
+
|
57 |
def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData):
|
58 |
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
|
59 |
|
|
|
97 |
torch.backends.cuda.matmul.allow_tf32 = True
|
98 |
torch.backends.cudnn.allow_tf32 = True
|
99 |
|
100 |
+
def show_mask(mask, ax, obj_id=None, random_color=False):
|
101 |
if random_color:
|
102 |
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
103 |
else:
|
104 |
+
cmap = plt.get_cmap("tab10")
|
105 |
+
cmap_idx = 0 if obj_id is None else obj_id
|
106 |
+
color = np.array([*cmap(cmap_idx)[:3], 0.6])
|
107 |
h, w = mask.shape[-2:]
|
108 |
+
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
ax.imshow(mask_image)
|
110 |
|
111 |
+
|
112 |
+
def show_points(coords, labels, ax, marker_size=200):
|
113 |
pos_points = coords[labels==1]
|
114 |
neg_points = coords[labels==0]
|
115 |
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
|
116 |
+
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
|
117 |
|
118 |
def show_box(box, ax):
|
119 |
x0, y0 = box[0], box[1]
|
|
|
167 |
return combined_images, mask_images
|
168 |
|
169 |
|
170 |
+
def sam_process(input_first_frame_image, checkpoint, tracking_points, trackings_input_label):
|
171 |
+
# 1. We need to preprocess the video and store frames in the right directory
|
172 |
+
# — Penser à utiliser un ID unique pour le dossier
|
173 |
|
174 |
+
|
175 |
+
# Load model accordingly to user's choice
|
176 |
if checkpoint == "tiny":
|
177 |
sam2_checkpoint = "./checkpoints/sam2_hiera_tiny.pt"
|
178 |
model_cfg = "sam2_hiera_t.yaml"
|
|
|
186 |
sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
|
187 |
model_cfg = "sam2_hiera_l.yaml"
|
188 |
|
189 |
+
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
|
190 |
+
|
191 |
+
|
192 |
+
# `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg`
|
193 |
+
video_dir = "./videos/bedroom"
|
194 |
+
|
195 |
+
# scan all the JPEG frame names in this directory
|
196 |
+
frame_names = [
|
197 |
+
p for p in os.listdir(video_dir)
|
198 |
+
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
|
199 |
+
]
|
200 |
+
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
|
201 |
|
202 |
+
|
203 |
+
inference_state = predictor.init_state(video_path=video_dir)
|
204 |
+
|
205 |
+
# segment and track one object
|
206 |
+
predictor.reset_state(inference_state) # if any previous tracking, reset
|
207 |
|
208 |
+
# Add new point
|
209 |
+
ann_frame_idx = 0 # the frame index we interact with
|
210 |
+
ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
|
211 |
+
|
212 |
+
# Let's add a positive click at (x, y) = (210, 350) to get started
|
213 |
+
points = np.array(tracking_points.value), dtype=np.float32)
|
214 |
+
# for labels, `1` means positive click and `0` means negative click
|
215 |
+
labels = np.array(trackings_input_label.value, np.int32)
|
216 |
+
_, out_obj_ids, out_mask_logits = predictor.add_new_points(
|
217 |
+
inference_state=inference_state,
|
218 |
+
frame_idx=ann_frame_idx,
|
219 |
+
obj_id=ann_obj_id,
|
220 |
+
points=points,
|
221 |
+
labels=labels,
|
222 |
+
)
|
223 |
|
224 |
+
# Create the plot
|
225 |
+
plt.figure(figsize=(12, 8))
|
226 |
+
plt.title(f"frame {ann_frame_idx}")
|
227 |
+
plt.imshow(Image.open(os.path.join(video_dir, frame_names[ann_frame_idx])))
|
228 |
+
show_points(points, labels, plt.gca())
|
229 |
+
show_mask((out_mask_logits[0] > 0.0).cpu().numpy(), plt.gca(), obj_id=out_obj_ids[0])
|
230 |
+
|
231 |
+
# Save the plot as a JPG file
|
232 |
+
output_filename = "output_frame.jpg"
|
233 |
+
plt.savefig(output_filename, format='jpg')
|
234 |
+
plt.close()
|
235 |
|
236 |
+
"""
|
237 |
+
#### PROPAGATION ####
|
238 |
|
239 |
+
# Define a directory to save the JPEG images
|
240 |
+
frames_output_dir = "frames_output_images"
|
241 |
+
os.makedirs(frames_output_dir, exist_ok=True)
|
242 |
+
|
243 |
+
# Initialize a list to store file paths of saved images
|
244 |
+
jpeg_images = []
|
|
|
|
|
|
|
245 |
|
246 |
+
# run propagation throughout the video and collect the results in a dict
|
247 |
+
video_segments = {} # video_segments contains the per-frame segmentation results
|
248 |
+
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
|
249 |
+
video_segments[out_frame_idx] = {
|
250 |
+
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
251 |
+
for i, out_obj_id in enumerate(out_obj_ids)
|
252 |
+
}
|
253 |
+
|
254 |
+
# render the segmentation results every few frames
|
255 |
+
vis_frame_stride = 15
|
256 |
+
plt.close("all")
|
257 |
+
for out_frame_idx in range(0, len(frame_names), vis_frame_stride):
|
258 |
+
plt.figure(figsize=(6, 4))
|
259 |
+
plt.title(f"frame {out_frame_idx}")
|
260 |
+
plt.imshow(Image.open(os.path.join(video_dir, frame_names[out_frame_idx])))
|
261 |
+
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
|
262 |
+
show_mask(out_mask, plt.gca(), obj_id=out_obj_id)
|
263 |
|
264 |
+
# Define the output filename and save the figure as a JPEG file
|
265 |
+
output_filename = os.path.join(frames_output_dir, f"frame_{out_frame_idx}.jpg")
|
266 |
+
plt.savefig(output_filename, format='jpg')
|
267 |
+
|
268 |
+
# Append the file path to the list
|
269 |
+
jpeg_images.append(output_filename)
|
270 |
+
|
271 |
+
# Close the plot
|
272 |
+
plt.close()
|
273 |
+
"""
|
274 |
+
# OLD
|
275 |
|
276 |
+
return output_filename
|
277 |
|
278 |
with gr.Blocks() as demo:
|
279 |
first_frame_path = gr.State()
|
280 |
tracking_points = gr.State([])
|
281 |
trackings_input_label = gr.State([])
|
282 |
with gr.Column():
|
283 |
+
gr.Markdown("# SAM2 Video Predictor")
|
284 |
+
gr.Markdown("This is a simple demo for video segmentation with SAM2.")
|
285 |
gr.Markdown("""Instructions:
|
286 |
|
287 |
+
1. Upload your video
|
288 |
+
2. With 'include' point type selected, Click on the object to mask on first frame
|
289 |
3. Switch to 'exclude' point type if you want to specify an area to avoid
|
290 |
4. Submit !
|
291 |
""")
|
292 |
with gr.Row():
|
293 |
with gr.Column():
|
294 |
+
input_first_frame_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False)
|
295 |
points_map = gr.Image(
|
296 |
label="points map",
|
297 |
type="filepath",
|
298 |
interactive=True
|
299 |
)
|
300 |
+
video_in = gr.Video(label="Video IN")
|
301 |
with gr.Row():
|
302 |
point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include")
|
303 |
clear_points_btn = gr.Button("Clear Points")
|
|
|
305 |
submit_btn = gr.Button("Submit")
|
306 |
with gr.Column():
|
307 |
output_result = gr.Image()
|
308 |
+
# output_result_mask = gr.Image()
|
309 |
|
310 |
clear_points_btn.click(
|
311 |
fn = preprocess_image,
|
312 |
+
inputs = input_first_frame_image,
|
313 |
outputs = [first_frame_path, tracking_points, trackings_input_label, points_map],
|
314 |
queue=False
|
315 |
)
|
316 |
|
317 |
+
video_in.upload(
|
318 |
+
fn = preprocess_video_in,
|
319 |
+
inputs = [video_in],
|
320 |
+
outputs = [first_frame_path, tracking_points, trackings_input_label, input_first_frame_image, point_map],
|
321 |
queue = False
|
322 |
)
|
323 |
|
|
|
330 |
|
331 |
submit_btn.click(
|
332 |
fn = sam_process,
|
333 |
+
inputs = [input_first_frame_image, checkpoint, tracking_points, trackings_input_label],
|
334 |
+
outputs = [output_result]
|
335 |
)
|
336 |
|
337 |
demo.launch(show_api=False, show_error=True)
|