File size: 19,875 Bytes
c4a81c0
7f9d65e
96e731e
c4a81c0
 
ba0d504
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a81c0
6c0d568
e65f811
a4f8a15
 
6c0d568
1eecd17
eee8ee3
6c0d568
eee8ee3
0479145
6c0d568
fbb77f2
 
fd0d56e
 
 
 
 
 
 
 
 
 
 
 
 
96e731e
d5deb3f
 
 
83fd490
 
d5deb3f
83fd490
d5deb3f
eee8ee3
0479145
 
 
 
d5deb3f
 
96e731e
0479145
 
96e731e
d5deb3f
 
0479145
 
 
 
 
 
 
c49015b
 
 
 
 
 
0479145
 
 
 
 
c49015b
0479145
 
 
96e731e
0479145
 
 
 
 
 
 
 
 
 
 
 
68c6b17
 
 
96e731e
68c6b17
 
 
d5deb3f
 
 
 
 
 
 
 
96e731e
d5deb3f
 
 
 
 
0479145
4d3675e
eee8ee3
 
 
 
 
3b79011
 
 
 
eee8ee3
3b79011
935805a
eee8ee3
 
935805a
 
 
 
 
 
 
 
3b79011
 
935805a
3b79011
935805a
eee8ee3
935805a
 
eee8ee3
 
 
 
aafe80a
 
 
 
 
 
 
 
0479145
6c0d568
 
 
0479145
 
 
6c0d568
0479145
6c0d568
 
0479145
 
6c0d568
 
 
0479145
6c0d568
 
 
 
 
 
 
f2010da
0479145
a4918b7
 
 
96e731e
a4918b7
b308d40
a4918b7
96e731e
a4918b7
b308d40
a4918b7
96e731e
a4918b7
b308d40
a4918b7
96e731e
f2010da
95134d2
a4918b7
96e731e
 
 
 
 
 
 
 
 
 
 
 
 
f2010da
96e731e
 
 
0479145
96e731e
0479145
 
f2010da
 
0479145
 
68c6b17
96e731e
 
0479145
96e731e
0479145
 
c4a81c0
6c0d568
96e731e
e3a7f2f
0479145
96e731e
 
e3a7f2f
7f9d65e
 
 
 
 
 
 
e3a7f2f
 
7f9d65e
0479145
 
 
6d8faa9
0479145
 
 
 
 
 
 
 
 
6c0d568
0479145
 
 
 
 
 
 
 
f2010da
 
0479145
b048b56
 
e3a7f2f
6c0d568
3df73f7
f2010da
 
 
28dd534
f82120a
 
62402d2
28dd534
0479145
 
 
 
 
 
6c0d568
0479145
 
 
 
 
 
 
 
 
28dd534
 
 
 
ab48935
0479145
 
 
 
 
 
 
6c0d568
0479145
 
 
 
 
 
6c0d568
22a3ce6
 
 
b048b56
ab48935
fbb77f2
28dd534
40eec4d
28dd534
fbb77f2
fd0d56e
 
fac93d0
fbb77f2
 
 
469fa31
 
 
 
22a3ce6
469fa31
 
b647399
4d67d4b
 
 
 
 
 
6c0d568
7f9d65e
fb0210c
 
 
 
 
 
7f9d65e
 
 
 
 
6724ff0
40eec4d
fac93d0
6c0d568
eee8ee3
 
 
f2010da
68c6b17
e61c4ed
 
6c0d568
0479145
 
4d3675e
 
0479145
 
4d3675e
 
 
eee8ee3
abdc509
eee8ee3
b177fca
610729e
ae8c232
abdc509
 
610729e
0479145
610729e
935805a
ae8c232
935805a
28dd534
935805a
610729e
51c3be9
ae8c232
 
b177fca
 
 
610729e
e6603c1
7f9d65e
e2e6da8
28dd534
ae8c232
28dd534
ae8c232
28dd534
0479145
eee8ee3
0c327c7
d5deb3f
 
0479145
 
 
d5deb3f
 
 
 
 
 
 
 
 
 
 
 
e8b186a
51c3be9
eee8ee3
d5deb3f
 
0c327c7
e8b186a
d5deb3f
 
 
 
 
 
 
 
 
 
 
e8b186a
0c327c7
d5deb3f
 
 
96e731e
d5deb3f
 
 
 
 
 
 
 
 
 
eee8ee3
5d3e654
7f9d65e
 
 
40eec4d
7f9d65e
 
5d3e654
7f9d65e
6c0d568
96e731e
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a7f2f
96e731e
f2010da
 
 
4d67d4b
 
 
 
 
f2010da
fd0d56e
b647399
6c0d568
e8b186a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
import subprocess
import re
from typing import List, Tuple, Optional

# Define the command to be executed
command = ["python", "setup.py", "build_ext", "--inplace"]

# Execute the command
result = subprocess.run(command, capture_output=True, text=True)

# Print the output and error (if any)
print("Output:\n", result.stdout)
print("Errors:\n", result.stderr)

# Check if the command was successful
if result.returncode == 0:
    print("Command executed successfully.")
else:
    print("Command failed with return code:", result.returncode)

import gradio as gr
from datetime import datetime
import os
os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1"
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter
from sam2.build_sam import build_sam2_video_predictor

from moviepy.editor import ImageSequenceClip

def get_video_fps(video_path):
    # Open the video file
    cap = cv2.VideoCapture(video_path)
    
    if not cap.isOpened():
        print("Error: Could not open video.")
        return None
    
    # Get the FPS of the video
    fps = cap.get(cv2.CAP_PROP_FPS)

    return fps

def clear_points(image):
    # we clean all
    return [
        image,   # first_frame_path
        gr.State([]),      # tracking_points
        gr.State([]),      # trackings_input_label
        image,   # points_map
        gr.State()     # stored_inference_state
    ]

def preprocess_video_in(video_path):

    # Generate a unique ID based on the current date and time
    unique_id = datetime.now().strftime('%Y%m%d%H%M%S')
    
    # Set directory with this ID to store video frames 
    extracted_frames_output_dir = f'frames_{unique_id}'
    
    # Create the output directory
    os.makedirs(extracted_frames_output_dir, exist_ok=True)

    ### Process video frames ###
    # Open the video file
    cap = cv2.VideoCapture(video_path)
    
    if not cap.isOpened():
        print("Error: Could not open video.")
        return None

    # Get the frames per second (FPS) of the video
    fps = cap.get(cv2.CAP_PROP_FPS)
    
    # Calculate the number of frames to process (10 seconds of video)
    max_frames = int(fps * 10)
    
    frame_number = 0
    first_frame = None
    
    while True:
        ret, frame = cap.read()
        if not ret or frame_number >= max_frames:
            break
        
        # Format the frame filename as '00000.jpg'
        frame_filename = os.path.join(extracted_frames_output_dir, f'{frame_number:05d}.jpg')
        
        # Save the frame as a JPEG file
        cv2.imwrite(frame_filename, frame)
        
        # Store the first frame
        if frame_number == 0:
            first_frame = frame_filename
        
        frame_number += 1
    
    # Release the video capture object
    cap.release()
    
    # scan all the JPEG frame names in this directory
    scanned_frames = [
        p for p in os.listdir(extracted_frames_output_dir)
        if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
    ]
    scanned_frames.sort(key=lambda p: int(os.path.splitext(p)[0]))
    print(f"SCANNED_FRAMES: {scanned_frames}")
    
    return [
        first_frame,           # first_frame_path
        gr.State([]),          # tracking_points
        gr.State([]),          # trackings_input_label
        first_frame,           # input_first_frame_image
        first_frame,           # points_map
        extracted_frames_output_dir,            # video_frames_dir
        scanned_frames,        # scanned_frames
        None,                  # stored_inference_state
        None,                  # stored_frame_names
        gr.update(open=False)  # video_in_drawer
    ]

def get_point(point_type, tracking_points, trackings_input_label, first_frame_path, evt: gr.SelectData):
    print(f"You selected {evt.value} at {evt.index} from {evt.target}")

    tracking_points.value.append(evt.index)
    print(f"TRACKING POINT: {tracking_points.value}")

    if point_type == "include":
        trackings_input_label.value.append(1)
    elif point_type == "exclude":
        trackings_input_label.value.append(0)
    print(f"TRACKING INPUT LABEL: {trackings_input_label.value}")
    
    # Open the image and get its dimensions
    transparent_background = Image.open(first_frame_path).convert('RGBA')
    w, h = transparent_background.size
    
    # Define the circle radius as a fraction of the smaller dimension
    fraction = 0.02  # You can adjust this value as needed
    radius = int(fraction * min(w, h))
    
    # Create a transparent layer to draw on
    transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)
    
    for index, track in enumerate(tracking_points.value):
        if trackings_input_label.value[index] == 1:
            cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
        else:
            cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)

    # Convert the transparent layer back to an image
    transparent_layer = Image.fromarray(transparent_layer, 'RGBA')
    selected_point_map = Image.alpha_composite(transparent_background, transparent_layer)
    
    return tracking_points, trackings_input_label, selected_point_map
    
# use bfloat16 for the entire notebook
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()

if torch.cuda.get_device_properties(0).major >= 8:
    # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True
    
def show_mask(mask, ax, obj_id=None, random_color=False):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        cmap = plt.get_cmap("tab10")
        cmap_idx = 0 if obj_id is None else obj_id
        color = np.array([*cmap(cmap_idx)[:3], 0.6])
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)


def show_points(coords, labels, ax, marker_size=200):
    pos_points = coords[labels==1]
    neg_points = coords[labels==0]
    ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
    ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)

def show_box(box, ax):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))    


def load_model(checkpoint):
    # Load model accordingly to user's choice
    if checkpoint == "tiny":
        sam2_checkpoint = "./checkpoints/sam2_hiera_tiny.pt"
        model_cfg = "sam2_hiera_t.yaml"
        return [sam2_checkpoint, model_cfg]
    elif checkpoint == "samll":
        sam2_checkpoint = "./checkpoints/sam2_hiera_small.pt"
        model_cfg = "sam2_hiera_s.yaml"
        return [sam2_checkpoint, model_cfg]
    elif checkpoint == "base-plus":
        sam2_checkpoint = "./checkpoints/sam2_hiera_base_plus.pt"
        model_cfg = "sam2_hiera_b+.yaml"
        return [sam2_checkpoint, model_cfg]
    elif checkpoint == "large":
        sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
        model_cfg = "sam2_hiera_l.yaml"
        return [sam2_checkpoint, model_cfg]

    
    
def get_mask_sam_process(
    input_first_frame_image, 
    checkpoint, 
    tracking_points, 
    trackings_input_label, 
    video_frames_dir, # extracted_frames_output_dir defined in 'preprocess_video_in' function
    scanned_frames, 
    working_frame: str = None, # current frame being added points
    progress=gr.Progress(track_tqdm=True)
):
    
    # get model and model config paths
    print(f"USER CHOSEN CHECKPOINT: {checkpoint}")
    sam2_checkpoint, model_cfg = load_model(checkpoint)
    print("MODEL LOADED")

    # set predictor 
    predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
    print("PREDICTOR READY")

    # `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg`
    print(f"STATE FRAME OUTPUT DIRECTORY: {video_frames_dir}")
    video_dir = video_frames_dir
    
    # scan all the JPEG frame names in this directory
    frame_names = scanned_frames

    # Init SAM2 inference_state
    inference_state = predictor.init_state(video_path=video_dir)
    print("NEW INFERENCE_STATE INITIATED")

    # segment and track one object
    # predictor.reset_state(inference_state) # if any previous tracking, reset

    ### HANDLING WORKING FRAME
    # new_working_frame = None
    # Add new point
    if working_frame is None:
        ann_frame_idx = 0  # the frame index we interact with, 0 if it is the first frame
        working_frame = "frame_0.jpg"
    else:
        # Use a regular expression to find the integer
        match = re.search(r'frame_(\d+)', working_frame)
        if match:
            # Extract the integer from the match
            frame_number = int(match.group(1))
            ann_frame_idx = frame_number
            
    print(f"NEW_WORKING_FRAME PATH: {working_frame}")
    
    ann_obj_id = 1  # give a unique id to each object we interact with (it can be any integers)
    
    # Let's add a positive click at (x, y) = (210, 350) to get started
    points = np.array(tracking_points.value, dtype=np.float32)
    # for labels, `1` means positive click and `0` means negative click
    labels = np.array(trackings_input_label.value, np.int32)
    _, out_obj_ids, out_mask_logits = predictor.add_new_points(
        inference_state=inference_state,
        frame_idx=ann_frame_idx,
        obj_id=ann_obj_id,
        points=points,
        labels=labels,
    )

    # Create the plot
    plt.figure(figsize=(12, 8))
    plt.title(f"frame {ann_frame_idx}")
    plt.imshow(Image.open(os.path.join(video_dir, frame_names[ann_frame_idx])))
    show_points(points, labels, plt.gca())
    show_mask((out_mask_logits[0] > 0.0).cpu().numpy(), plt.gca(), obj_id=out_obj_ids[0])
    
    # Save the plot as a JPG file
    first_frame_output_filename = "output_first_frame.jpg"
    plt.savefig(first_frame_output_filename, format='jpg')
    plt.close()
    torch.cuda.empty_cache()
    
    return "output_first_frame.jpg", frame_names, inference_state, gr.update(value=working_frame, visible=True)

def propagate_to_all(video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type, progress=gr.Progress(track_tqdm=True)):   
    #### PROPAGATION ####
    sam2_checkpoint, model_cfg = load_model(checkpoint)
    predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
    
    inference_state = stored_inference_state
    frame_names = stored_frame_names
    video_dir = video_frames_dir
    
    # Define a directory to save the JPEG images
    frames_output_dir = "frames_output_images"
    os.makedirs(frames_output_dir, exist_ok=True)
    
    # Initialize a list to store file paths of saved images
    jpeg_images = []

    # run propagation throughout the video and collect the results in a dict
    video_segments = {}  # video_segments contains the per-frame segmentation results
    for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
        video_segments[out_frame_idx] = {
            out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
            for i, out_obj_id in enumerate(out_obj_ids)
        }
    
    # render the segmentation results every few frames
    if vis_frame_type == "check":
        vis_frame_stride = 15
    elif vis_frame_type == "render":
        vis_frame_stride = 1
    
    plt.close("all")
    for out_frame_idx in range(0, len(frame_names), vis_frame_stride):
        plt.figure(figsize=(6, 4))
        plt.title(f"frame {out_frame_idx}")
        plt.imshow(Image.open(os.path.join(video_dir, frame_names[out_frame_idx])))
        for out_obj_id, out_mask in video_segments[out_frame_idx].items():
            show_mask(out_mask, plt.gca(), obj_id=out_obj_id)

        # Define the output filename and save the figure as a JPEG file
        output_filename = os.path.join(frames_output_dir, f"frame_{out_frame_idx}.jpg")
        plt.savefig(output_filename, format='jpg')
    
        # Close the plot
        plt.close()

        # Append the file path to the list
        jpeg_images.append(output_filename)

    torch.cuda.empty_cache()
    print(f"JPEG_IMAGES: {jpeg_images}")

    if vis_frame_type == "check":
        return gr.update(value=jpeg_images), gr.update(value=None), gr.update(choices=jpeg_images, value=None, visible=True)
    elif vis_frame_type == "render":
        # Create a video clip from the image sequence
        original_fps = get_video_fps(video_in)
        fps = original_fps  # Frames per second
        total_frames = len(jpeg_images)
        clip = ImageSequenceClip(jpeg_images, fps=fps)
        # Write the result to a file
        final_vid_output_path = "output_video.mp4"
        
        # Write the result to a file
        clip.write_videofile(
            final_vid_output_path,
            codec='libx264'
        )
        
        return gr.update(value=None), gr.update(value=final_vid_output_path), None

def update_ui(vis_frame_type):
    if vis_frame_type == "check":
        return gr.update(visible=True), gr.update(visible=False)
    elif vis_frame_type == "render":
        return gr.update(visible=False), gr.update(visible=True)

def switch_working_frame(working_frame, scanned_frames, video_frames_dir):
    new_working_frame = None
    if working_frame == None:
        new_working_frame = os.path.join(video_frames_dir, scanned_frames[0])
        return new_working_frame, gr.State([]), gr.State([]), new_working_frame, new_working_frame, new_working_frame
    else:
        # Use a regular expression to find the integer
        match = re.search(r'frame_(\d+)', working_frame)
        if match:
            # Extract the integer from the match
            frame_number = int(match.group(1))
            ann_frame_idx = frame_number
            new_working_frame = os.path.join(video_frames_dir, scanned_frames[ann_frame_idx])
            return new_working_frame, gr.State([]), gr.State([]), new_working_frame, new_working_frame, new_working_frame

with gr.Blocks() as demo:
    first_frame_path = gr.State()
    tracking_points = gr.State([])
    trackings_input_label = gr.State([])
    video_frames_dir = gr.State()
    scanned_frames = gr.State()
    stored_inference_state = gr.State()
    stored_frame_names = gr.State()
    with gr.Column():
        gr.Markdown("# SAM2 Video Predictor")
        gr.Markdown("This is a simple demo for video segmentation with SAM2.")
        gr.Markdown("""Instructions: 
        
        1. Upload your video 
        2. With 'include' point type selected, Click on the object to mask on first frame
        3. Switch to 'exclude' point type if you want to specify an area to avoid
        4. Submit !
        """)
        with gr.Row():
            
            with gr.Column():
                
                
                with gr.Row():
                    point_type = gr.Radio(label="point type", choices=["include", "exclude"], value="include", scale=2)
                    clear_points_btn = gr.Button("Clear Points", scale=1)
                
                input_first_frame_image = gr.Image(label="input image", interactive=False, type="filepath", visible=False)                 
                
                points_map = gr.Image(
                    label="Point n Click map", 
                    type="filepath",
                    interactive=False
                )
                
                with gr.Row():
                    checkpoint = gr.Dropdown(label="Checkpoint", choices=["tiny", "small", "base-plus", "large"], value="tiny")
                    submit_btn = gr.Button("Submit", size="lg")

                with gr.Accordion("Your video IN", open=True) as video_in_drawer:
                    video_in = gr.Video(label="Video IN")
            
            with gr.Column():
                working_frame = gr.Dropdown(label="working frame ID", choices=[""], value=None, visible=False, allow_custom_value=False, interactive=True)
                output_result = gr.Image(label="current working mask ref")
                with gr.Row():
                    vis_frame_type = gr.Radio(label="Propagation level", choices=["check", "render"], value="check", scale=2)
                    propagate_btn = gr.Button("Propagate", scale=1)
                output_propagated = gr.Gallery(label="Propagated Mask samples gallery", visible=False)
                output_video = gr.Video(visible=False)
                # output_result_mask = gr.Image()
    
    

    # When new video is uploaded
    video_in.upload(
        fn = preprocess_video_in, 
        inputs = [video_in], 
        outputs = [
            first_frame_path, 
            tracking_points, # update Tracking Points in the gr.State([]) object
            trackings_input_label, # update Tracking Labels in the gr.State([]) object
            input_first_frame_image, # hidden component used as ref when clearing points
            points_map, # Image component where we add new tracking points
            video_frames_dir, # Array where frames from video_in are deep stored
            scanned_frames, # Scanned frames by SAM2
            stored_inference_state, # Sam2 inference state
            stored_frame_names, # 
            video_in_drawer, # Accordion to hide uploaded video player
        ],
        queue = False
    )

    
    # triggered when we click on image to add new points
    points_map.select(
        fn = get_point, 
        inputs = [
            point_type, # "include" or "exclude"
            tracking_points, # get tracking_points values
            trackings_input_label, # get tracking label values
            first_frame_path, # gr.State() first frame path
        ], 
        outputs = [
            tracking_points, # updated with new points
            trackings_input_label, # updated with corresponding labels
            points_map, # updated image with points
        ], 
        queue = False
    )

    # Clear every points clicked and added to the map
    clear_points_btn.click(
        fn = clear_points,
        inputs = input_first_frame_image, # we get the untouched hidden image
        outputs = [
            first_frame_path, 
            tracking_points, 
            trackings_input_label, 
            points_map, 
            stored_inference_state,
        ],
        queue=False
    )

    """
    working_frame.change(
        fn = switch_working_frame,
        inputs = [working_frame, scanned_frames, video_frames_dir],
        outputs = [first_frame_path, tracking_points, trackings_input_label, input_first_frame_image, points_map, working_frame],
        queue=False
    )
    """

    submit_btn.click(
        fn = get_mask_sam_process,
        inputs = [
            input_first_frame_image, 
            checkpoint, 
            tracking_points, 
            trackings_input_label, 
            video_frames_dir, 
            scanned_frames, 
            working_frame,
        ],
        outputs = [
            output_result, 
            stored_frame_names, 
            stored_inference_state,
            working_frame,
        ]
    )

    propagate_btn.click(
        fn = update_ui,
        inputs = [vis_frame_type],
        outputs = [output_propagated, output_video],
        queue=False
    ).then(
        fn = propagate_to_all,
        inputs = [video_in, checkpoint, stored_inference_state, stored_frame_names, video_frames_dir, vis_frame_type],
        outputs = [output_propagated, output_video, working_frame]
    )

demo.launch(show_api=False, show_error=True)