|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from einops import rearrange |
|
from .transformer_utils import BaseTemperalPointModel |
|
import math |
|
from einops_exts import check_shape, rearrange_many |
|
from functools import partial |
|
from rotary_embedding_torch import RotaryEmbedding |
|
|
|
def exists(x): |
|
return x is not None |
|
|
|
class SinusoidalPosEmb(nn.Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
self.dim = dim |
|
|
|
def forward(self, x): |
|
device = x.device |
|
half_dim = self.dim // 2 |
|
emb = math.log(10000) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, device=device) * -emb) |
|
emb = x[:, None] * emb[None, :] |
|
emb = torch.cat((emb.sin(), emb.cos()), dim=-1) |
|
return emb |
|
|
|
|
|
class RelativePositionBias(nn.Module): |
|
def __init__( |
|
self, |
|
heads = 8, |
|
num_buckets = 32, |
|
max_distance = 128 |
|
): |
|
super().__init__() |
|
self.num_buckets = num_buckets |
|
self.max_distance = max_distance |
|
self.relative_attention_bias = nn.Embedding(num_buckets, heads) |
|
|
|
@staticmethod |
|
def _relative_position_bucket(relative_position, num_buckets = 32, max_distance = 128): |
|
ret = 0 |
|
n = -relative_position |
|
|
|
num_buckets //= 2 |
|
ret += (n < 0).long() * num_buckets |
|
n = torch.abs(n) |
|
|
|
max_exact = num_buckets // 2 |
|
is_small = n < max_exact |
|
|
|
val_if_large = max_exact + ( |
|
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) |
|
).long() |
|
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) |
|
|
|
ret += torch.where(is_small, n, val_if_large) |
|
return ret |
|
|
|
def forward(self, n, device): |
|
q_pos = torch.arange(n, dtype = torch.long, device = device) |
|
k_pos = torch.arange(n, dtype = torch.long, device = device) |
|
rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1') |
|
rp_bucket = self._relative_position_bucket(rel_pos, num_buckets = self.num_buckets, max_distance = self.max_distance) |
|
values = self.relative_attention_bias(rp_bucket) |
|
return rearrange(values, 'i j h -> h i j') |
|
|
|
|
|
class Residual(nn.Module): |
|
def __init__(self, fn): |
|
super().__init__() |
|
self.fn = fn |
|
|
|
def forward(self, x, *args, **kwargs): |
|
return self.fn(x, *args, **kwargs) + x |
|
|
|
|
|
class LayerNorm(nn.Module): |
|
def __init__(self, dim, eps = 1e-5): |
|
super().__init__() |
|
self.eps = eps |
|
self.gamma = nn.Parameter(torch.ones(1, 1, dim)) |
|
self.beta = nn.Parameter(torch.zeros(1, 1, dim)) |
|
|
|
def forward(self, x): |
|
var = torch.var(x, dim = -1, unbiased = False, keepdim = True) |
|
mean = torch.mean(x, dim = -1, keepdim = True) |
|
return (x - mean) / (var + self.eps).sqrt() * self.gamma + self.beta |
|
|
|
|
|
class PreNorm(nn.Module): |
|
def __init__(self, dim, fn): |
|
super().__init__() |
|
self.fn = fn |
|
self.norm = LayerNorm(dim) |
|
|
|
def forward(self, x, **kwargs): |
|
x = self.norm(x) |
|
return self.fn(x, **kwargs) |
|
|
|
|
|
class EinopsToAndFrom(nn.Module): |
|
def __init__(self, from_einops, to_einops, fn): |
|
super().__init__() |
|
self.from_einops = from_einops |
|
self.to_einops = to_einops |
|
self.fn = fn |
|
|
|
def forward(self, x, **kwargs): |
|
shape = x.shape |
|
reconstitute_kwargs = dict(tuple(zip(self.from_einops.split(' '), shape))) |
|
x = rearrange(x, f'{self.from_einops} -> {self.to_einops}') |
|
x = self.fn(x, **kwargs) |
|
x = rearrange(x, f'{self.to_einops} -> {self.from_einops}', **reconstitute_kwargs) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, dim, heads=4, attn_head_dim=None, casual_attn=False,rotary_emb = None): |
|
super().__init__() |
|
self.num_heads = heads |
|
head_dim = dim // heads |
|
self.casual_attn = casual_attn |
|
|
|
if attn_head_dim is not None: |
|
head_dim = attn_head_dim |
|
|
|
all_head_dim = head_dim * self.num_heads |
|
self.scale = head_dim ** -0.5 |
|
self.to_qkv = nn.Linear(dim, all_head_dim * 3, bias=False) |
|
self.proj = nn.Linear(all_head_dim, dim) |
|
self.rotary_emb = rotary_emb |
|
|
|
def forward(self, x, pos_bias = None): |
|
N, device = x.shape[-2], x.device |
|
qkv = self.to_qkv(x).chunk(3, dim = -1) |
|
|
|
q, k, v = rearrange_many(qkv, '... n (h d) -> ... h n d', h=self.num_heads) |
|
|
|
q = q * self.scale |
|
|
|
if exists(self.rotary_emb): |
|
q = self.rotary_emb.rotate_queries_or_keys(q) |
|
k = self.rotary_emb.rotate_queries_or_keys(k) |
|
|
|
sim = torch.einsum('... h i d, ... h j d -> ... h i j', q, k) |
|
|
|
if exists(pos_bias): |
|
sim = sim + pos_bias |
|
|
|
if self.casual_attn: |
|
mask = torch.tril(torch.ones(sim.size(-1), sim.size(-2))).to(device) |
|
sim = sim.masked_fill(mask[..., :, :] == 0, float('-inf')) |
|
|
|
attn = sim.softmax(dim = -1) |
|
x = torch.einsum('... h i j, ... h j d -> ... h i d', attn, v) |
|
x = rearrange(x, '... h n d -> ... n (h d)') |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__(self, dim, dim_out): |
|
super().__init__() |
|
self.proj = nn.Linear(dim, dim_out) |
|
self.norm = LayerNorm(dim) |
|
self.act = nn.SiLU() |
|
|
|
def forward(self, x, scale_shift=None): |
|
x = self.proj(x) |
|
|
|
if exists(scale_shift): |
|
x = self.norm(x) |
|
scale, shift = scale_shift |
|
x = x * (scale + 1) + shift |
|
return self.act(x) |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
def __init__(self, dim, dim_out, cond_dim=None): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(cond_dim, dim_out * 2) |
|
) if exists(cond_dim) else None |
|
|
|
self.block1 = Block(dim, dim_out) |
|
self.block2 = Block(dim_out, dim_out) |
|
|
|
def forward(self, x, cond_emb=None): |
|
scale_shift = None |
|
if exists(self.mlp): |
|
assert exists(cond_emb), 'time emb must be passed in' |
|
cond_emb = self.mlp(cond_emb) |
|
|
|
scale_shift = cond_emb.chunk(2, dim=-1) |
|
|
|
h = self.block1(x, scale_shift=scale_shift) |
|
h = self.block2(h) |
|
return h + x |
|
|
|
class SimpleTransModel(BaseTemperalPointModel): |
|
""" |
|
A simple model that processes a point cloud by applying a series of MLPs to each point |
|
individually, along with some pooled global features. |
|
""" |
|
|
|
def get_layers(self): |
|
self.input_projection = nn.Linear( |
|
in_features=70, |
|
out_features=self.dim |
|
) |
|
|
|
cond_dim = 512 + self.timestep_embed_dim |
|
|
|
num_head = self.dim//64 |
|
|
|
rotary_emb = RotaryEmbedding(min(32, num_head)) |
|
|
|
self.time_rel_pos_bias = RelativePositionBias(heads=num_head, max_distance=128) |
|
|
|
temporal_casual_attn = lambda dim: Attention(dim, heads=num_head, casual_attn=False,rotary_emb=rotary_emb) |
|
|
|
cond_block = partial(ResnetBlock, cond_dim=cond_dim) |
|
|
|
layers = nn.ModuleList([]) |
|
|
|
for _ in range(self.num_layers): |
|
layers.append(nn.ModuleList([ |
|
cond_block(self.dim, self.dim), |
|
cond_block(self.dim, self.dim), |
|
Residual(PreNorm(self.dim, temporal_casual_attn(self.dim))) |
|
])) |
|
|
|
return layers |
|
|
|
def forward(self, inputs: torch.Tensor, timesteps: torch.Tensor, context=None): |
|
""" |
|
Apply the model to an input batch. |
|
:param x: an [N x C x ...] Tensor of inputs. |
|
:param timesteps: a 1-D batch of timesteps. |
|
:param context: conditioning plugged in via crossattn |
|
""" |
|
|
|
|
|
batch, num_frames, channels = inputs.size() |
|
|
|
device = inputs.device |
|
x = self.input_projection(inputs) |
|
|
|
t_emb = self.time_mlp(timesteps) if exists(self.time_mlp) else None |
|
t_emb = t_emb[:,None,:].expand(-1, num_frames, -1) |
|
if context is not None: |
|
t_emb = torch.cat([t_emb, context],-1) |
|
|
|
time_rel_pos_bias = self.time_rel_pos_bias(num_frames, device=device) |
|
|
|
for block1, block2, temporal_attn in self.layers: |
|
x = block1(x, t_emb) |
|
x = block2(x, t_emb) |
|
x = temporal_attn(x, pos_bias=time_rel_pos_bias) |
|
|
|
|
|
x = self.output_projection(x) |
|
return x |