File size: 8,632 Bytes
a6028c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import torch
import torch.nn.functional as F
from torch import nn
from einops import rearrange
from .transformer_utils import BaseTemperalPointModel
import math
from einops_exts import check_shape, rearrange_many
from functools import partial
from rotary_embedding_torch import RotaryEmbedding

def exists(x):
    return x is not None

class SinusoidalPosEmb(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
        device = x.device
        half_dim = self.dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
        emb = x[:, None] * emb[None, :]
        emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
        return emb


class RelativePositionBias(nn.Module):
    def __init__(
        self,
        heads = 8,
        num_buckets = 32,
        max_distance = 128
    ):
        super().__init__()
        self.num_buckets = num_buckets
        self.max_distance = max_distance
        self.relative_attention_bias = nn.Embedding(num_buckets, heads)

    @staticmethod
    def _relative_position_bucket(relative_position, num_buckets = 32, max_distance = 128):
        ret = 0
        n = -relative_position

        num_buckets //= 2
        ret += (n < 0).long() * num_buckets
        n = torch.abs(n)

        max_exact = num_buckets // 2
        is_small = n < max_exact

        val_if_large = max_exact + (
            torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
        ).long()
        val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))

        ret += torch.where(is_small, n, val_if_large)
        return ret

    def forward(self, n, device):
        q_pos = torch.arange(n, dtype = torch.long, device = device)
        k_pos = torch.arange(n, dtype = torch.long, device = device)
        rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1')
        rp_bucket = self._relative_position_bucket(rel_pos, num_buckets = self.num_buckets, max_distance = self.max_distance)
        values = self.relative_attention_bias(rp_bucket)
        return rearrange(values, 'i j h -> h i j')


class Residual(nn.Module):
    def __init__(self, fn):
        super().__init__()
        self.fn = fn

    def forward(self, x, *args, **kwargs):
        return self.fn(x, *args, **kwargs) + x


class LayerNorm(nn.Module):
    def __init__(self, dim, eps = 1e-5):
        super().__init__()
        self.eps = eps
        self.gamma = nn.Parameter(torch.ones(1, 1, dim))
        self.beta = nn.Parameter(torch.zeros(1, 1, dim))

    def forward(self, x):
        var = torch.var(x, dim = -1, unbiased = False, keepdim = True)
        mean = torch.mean(x, dim = -1, keepdim = True)
        return (x - mean) / (var + self.eps).sqrt() * self.gamma + self.beta


class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.fn = fn
        self.norm = LayerNorm(dim)

    def forward(self, x, **kwargs):
        x = self.norm(x)
        return self.fn(x, **kwargs)


class EinopsToAndFrom(nn.Module):
    def __init__(self, from_einops, to_einops, fn):
        super().__init__()
        self.from_einops = from_einops
        self.to_einops = to_einops
        self.fn = fn

    def forward(self, x, **kwargs):
        shape = x.shape
        reconstitute_kwargs = dict(tuple(zip(self.from_einops.split(' '), shape)))
        x = rearrange(x, f'{self.from_einops} -> {self.to_einops}')
        x = self.fn(x, **kwargs)
        x = rearrange(x, f'{self.to_einops} -> {self.from_einops}', **reconstitute_kwargs)
        return x


class Attention(nn.Module):
    def __init__(
            self, dim, heads=4, attn_head_dim=None, casual_attn=False,rotary_emb = None):
        super().__init__()
        self.num_heads = heads
        head_dim = dim // heads
        self.casual_attn = casual_attn

        if attn_head_dim is not None:
            head_dim = attn_head_dim

        all_head_dim = head_dim * self.num_heads
        self.scale = head_dim ** -0.5
        self.to_qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
        self.proj = nn.Linear(all_head_dim, dim)
        self.rotary_emb = rotary_emb

    def forward(self, x, pos_bias = None):
        N, device = x.shape[-2], x.device
        qkv = self.to_qkv(x).chunk(3, dim = -1)

        q, k, v = rearrange_many(qkv, '... n (h d) -> ... h n d', h=self.num_heads)

        q = q * self.scale

        if exists(self.rotary_emb):
            q = self.rotary_emb.rotate_queries_or_keys(q)
            k = self.rotary_emb.rotate_queries_or_keys(k)

        sim = torch.einsum('... h i d, ... h j d -> ... h i j', q, k)

        if exists(pos_bias):
            sim = sim + pos_bias

        if self.casual_attn:
            mask = torch.tril(torch.ones(sim.size(-1), sim.size(-2))).to(device)
            sim = sim.masked_fill(mask[..., :, :] == 0, float('-inf'))

        attn = sim.softmax(dim = -1)
        x = torch.einsum('... h i j, ... h j d -> ... h i d', attn, v)
        x = rearrange(x, '... h n d -> ... n (h d)')
        x = self.proj(x)
        return x


class Block(nn.Module):
    def __init__(self, dim, dim_out):
        super().__init__()
        self.proj = nn.Linear(dim, dim_out)
        self.norm = LayerNorm(dim)
        self.act = nn.SiLU()

    def forward(self, x, scale_shift=None):
        x = self.proj(x)

        if exists(scale_shift):
            x = self.norm(x)
            scale, shift = scale_shift
            x = x * (scale + 1) + shift
        return self.act(x)


class ResnetBlock(nn.Module):
    def __init__(self, dim, dim_out, cond_dim=None):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.SiLU(),
            nn.Linear(cond_dim, dim_out * 2)
        ) if exists(cond_dim) else None

        self.block1 = Block(dim, dim_out)
        self.block2 = Block(dim_out, dim_out)

    def forward(self, x, cond_emb=None):
        scale_shift = None
        if exists(self.mlp):
            assert exists(cond_emb), 'time emb must be passed in'
            cond_emb = self.mlp(cond_emb)
            #cond_emb = rearrange(cond_emb, 'b f c -> b f 1 c')
            scale_shift = cond_emb.chunk(2, dim=-1)

        h = self.block1(x, scale_shift=scale_shift)
        h = self.block2(h)
        return h + x

class SimpleTransModel(BaseTemperalPointModel):
    """
    A simple model that processes a point cloud by applying a series of MLPs to each point
    individually, along with some pooled global features.
    """

    def get_layers(self):
        self.input_projection = nn.Linear(
            in_features=70,
            out_features=self.dim
        )

        cond_dim = 512 + self.timestep_embed_dim

        num_head = self.dim//64

        rotary_emb = RotaryEmbedding(min(32, num_head))

        self.time_rel_pos_bias = RelativePositionBias(heads=num_head, max_distance=128)  # realistically will not be able to generate that many frames of video... yet

        temporal_casual_attn = lambda dim: Attention(dim, heads=num_head, casual_attn=False,rotary_emb=rotary_emb)

        cond_block = partial(ResnetBlock, cond_dim=cond_dim)

        layers = nn.ModuleList([])

        for _ in range(self.num_layers):
            layers.append(nn.ModuleList([
                cond_block(self.dim, self.dim),
                cond_block(self.dim, self.dim),
                Residual(PreNorm(self.dim, temporal_casual_attn(self.dim)))
            ]))

        return layers

    def forward(self, inputs: torch.Tensor, timesteps: torch.Tensor, context=None):
        """
         Apply the model to an input batch.
         :param x: an [N x C x ...] Tensor of inputs.
         :param timesteps: a 1-D batch of timesteps.
         :param context: conditioning plugged in via crossattn
         """
        # Prepare inputs

        batch, num_frames, channels = inputs.size()

        device = inputs.device
        x = self.input_projection(inputs)

        t_emb = self.time_mlp(timesteps) if exists(self.time_mlp) else None
        t_emb = t_emb[:,None,:].expand(-1, num_frames, -1)  # b f c
        if context is not None:
            t_emb = torch.cat([t_emb, context],-1)

        time_rel_pos_bias = self.time_rel_pos_bias(num_frames, device=device)

        for block1, block2,  temporal_attn in self.layers:
            x = block1(x, t_emb)
            x = block2(x, t_emb)
            x = temporal_attn(x, pos_bias=time_rel_pos_bias)

        # Project
        x = self.output_projection(x)
        return x