ControlVideo / app.py
fffiloni's picture
Update app.py
ac51b62
raw
history blame
4.14 kB
import gradio as gr
import os
import subprocess
import cv2
from moviepy.editor import VideoFileClip, concatenate_videoclips
import math
from huggingface_hub import snapshot_download
model_ids = [
'runwayml/stable-diffusion-v1-5',
'lllyasviel/sd-controlnet-depth',
'lllyasviel/sd-controlnet-canny',
'lllyasviel/sd-controlnet-openpose',
]
for model_id in model_ids:
model_name = model_id.split('/')[-1]
snapshot_download(model_id, local_dir=f'checkpoints/{model_name}')
def get_frame_count_in_duration(filepath):
video = cv2.VideoCapture(filepath)
fps = video.get(cv2.CAP_PROP_FPS)
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
duration = frame_count / fps
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
video.release()
return gr.update(maximum=frame_count)
def cut_mp4_into_chunks(input_file, chunk_size):
video = VideoFileClip(input_file)
frame_count = int(video.fps * video.duration)
num_chunks = (frame_count + chunk_size - 1) // chunk_size # Ceiling division
chunks = []
for i in range(num_chunks):
start_frame = i * chunk_size
end_frame = min((i + 1) * chunk_size, frame_count)
chunk = video.subclip(start_frame / video.fps, end_frame / video.fps)
chunk_frame_count = end_frame - start_frame
chunks.append((chunk, chunk_frame_count))
return chunks
def run_inference(prompt, video_path, condition, video_length):
chunk_size = 12
chunks = cut_mp4_into_chunks(video_path, chunk_size)
output_path = 'output/'
os.makedirs(output_path, exist_ok=True)
# Accessing chunks and frame counts by index
for i, (chunk, frame_count) in enumerate(chunks):
chunk.write_videofile(f'chunk_{i}.mp4') # Saving the chunk to a file
chunk_path = f'chunk_{i}.mp4'
print(f"Chunk {i}: Frame Count = {frame_count}")
command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{chunk_path}' --output_path '{output_path}' --video_length {frame_count}"
subprocess.run(command, shell=True)
def working_run_inference(prompt, video_path, condition, video_length):
output_path = 'output/'
os.makedirs(output_path, exist_ok=True)
# Construct the final video path
video_path_output = os.path.join(output_path, f"{prompt}.mp4")
# Check if the file already exists
if os.path.exists(video_path_output):
# Delete the existing file
os.remove(video_path_output)
if video_length > 12:
command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --video_length {video_length} --is_long_video"
else:
command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --video_length {video_length}"
subprocess.run(command, shell=True)
# Construct the video path
video_path_output = os.path.join(output_path, f"{prompt}.mp4")
return "done", video_path_output
with gr.Blocks() as demo:
with gr.Column():
prompt = gr.Textbox(label="prompt")
video_path = gr.Video(source="upload", type="filepath")
condition = gr.Textbox(label="Condition", value="depth")
video_length = gr.Slider(label="video length", minimum=1, maximum=15, step=1, value=2)
#seed = gr.Number(label="seed", value=42)
submit_btn = gr.Button("Submit")
video_res = gr.Video(label="result")
status = gr.Textbox(label="result")
video_path.change(fn=get_frame_count_in_duration,
inputs=[video_path],
outputs=[video_length]
)
submit_btn.click(fn=run_inference,
inputs=[prompt,
video_path,
condition,
video_length
],
outputs=[status, video_res])
demo.queue(max_size=12).launch()