File size: 4,135 Bytes
653ce35
7ca5351
c93a0cb
 
 
 
454eedf
39489bd
0cbec0b
acf84db
 
 
 
 
 
 
 
 
 
3a66e37
 
12c01c3
c05f3f8
 
12c01c3
 
 
 
c05f3f8
12c01c3
3a66e37
7d319ce
ac51b62
 
 
 
c93a0cb
ac51b62
c93a0cb
ac51b62
 
 
 
 
 
 
 
c93a0cb
39489bd
ac51b62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
618e51c
12c01c3
6fcb174
 
6a87ed0
c93a0cb
cc3607e
6a87ed0
 
 
 
 
07f7f7b
618e51c
 
0479125
 
de1d7d7
c93a0cb
de1d7d7
 
c93a0cb
de1d7d7
454eedf
de1d7d7
454eedf
7ca5351
 
 
 
 
 
 
39489bd
7ca5351
79917e9
 
12c01c3
 
 
 
39489bd
7ca5351
0269ee9
 
39489bd
0269ee9
eaf8a3c
106f93a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import gradio as gr
import os
import subprocess
import cv2
from moviepy.editor import VideoFileClip, concatenate_videoclips
import math

from huggingface_hub import snapshot_download

model_ids = [
    'runwayml/stable-diffusion-v1-5',
    'lllyasviel/sd-controlnet-depth', 
    'lllyasviel/sd-controlnet-canny', 
    'lllyasviel/sd-controlnet-openpose',
]
for model_id in model_ids:
    model_name = model_id.split('/')[-1]
    snapshot_download(model_id, local_dir=f'checkpoints/{model_name}')



def get_frame_count_in_duration(filepath):
    video = cv2.VideoCapture(filepath)
    fps = video.get(cv2.CAP_PROP_FPS)
    frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    duration = frame_count / fps
    width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
    video.release()
    return gr.update(maximum=frame_count)


def cut_mp4_into_chunks(input_file, chunk_size):
    video = VideoFileClip(input_file)
    frame_count = int(video.fps * video.duration)
    num_chunks = (frame_count + chunk_size - 1) // chunk_size  # Ceiling division

    chunks = []

    for i in range(num_chunks):
        start_frame = i * chunk_size
        end_frame = min((i + 1) * chunk_size, frame_count)
        chunk = video.subclip(start_frame / video.fps, end_frame / video.fps)
        chunk_frame_count = end_frame - start_frame
        chunks.append((chunk, chunk_frame_count))

    return chunks

def run_inference(prompt, video_path, condition, video_length):
    chunk_size = 12
    chunks = cut_mp4_into_chunks(video_path, chunk_size)

    output_path = 'output/'
    os.makedirs(output_path, exist_ok=True)

    # Accessing chunks and frame counts by index
    for i, (chunk, frame_count) in enumerate(chunks):
        chunk.write_videofile(f'chunk_{i}.mp4')  # Saving the chunk to a file
        chunk_path = f'chunk_{i}.mp4'
        print(f"Chunk {i}: Frame Count = {frame_count}")

        command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{chunk_path}' --output_path '{output_path}' --video_length {frame_count}"
        subprocess.run(command, shell=True)

def working_run_inference(prompt, video_path, condition, video_length):

    
    output_path = 'output/'
    os.makedirs(output_path, exist_ok=True)

    # Construct the final video path
    video_path_output = os.path.join(output_path, f"{prompt}.mp4")

    # Check if the file already exists
    if os.path.exists(video_path_output):
        # Delete the existing file
        os.remove(video_path_output)

    if video_length > 12:
        command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --video_length {video_length} --is_long_video"
    else:
        command = f"python inference.py --prompt '{prompt}' --condition '{condition}' --video_path '{video_path}' --output_path '{output_path}' --video_length {video_length}"
    subprocess.run(command, shell=True)

    # Construct the video path
    video_path_output = os.path.join(output_path, f"{prompt}.mp4")

        

    return "done", video_path_output 


with gr.Blocks() as demo:
    with gr.Column():
        prompt = gr.Textbox(label="prompt")
        video_path = gr.Video(source="upload", type="filepath")
        condition = gr.Textbox(label="Condition", value="depth")
        video_length = gr.Slider(label="video length", minimum=1, maximum=15, step=1, value=2)
        #seed = gr.Number(label="seed", value=42)
        submit_btn = gr.Button("Submit")
        video_res = gr.Video(label="result")
        status = gr.Textbox(label="result")
    video_path.change(fn=get_frame_count_in_duration,
                      inputs=[video_path],
                      outputs=[video_length]
                     )
    submit_btn.click(fn=run_inference, 
                     inputs=[prompt,
                             video_path,
                             condition,
                             video_length
                            ],
                    outputs=[status, video_res])

demo.queue(max_size=12).launch()