Spaces:
Running
Running
File size: 9,051 Bytes
c13b993 309d02d c13b993 309d02d c13b993 68bb6f6 c13b993 309d02d c13b993 309d02d c13b993 0c70ea0 c13b993 0c70ea0 c13b993 0c70ea0 209042f c13b993 0c70ea0 209042f 0c70ea0 209042f 0c70ea0 c13b993 0c70ea0 cc73002 0c70ea0 cc73002 0c70ea0 cc73002 0c70ea0 c13b993 cc73002 0c70ea0 c13b993 0c70ea0 c13b993 181ebc9 c13b993 181ebc9 c13b993 181ebc9 68919cf 181ebc9 761d959 181ebc9 c13b993 68919cf c13b993 ffed801 1ce127f c13b993 09de2e0 c13b993 68919cf c13b993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import gradio as gr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from huggingface_hub import HfApi
from datetime import datetime
import numpy as np
def format_number(num):
"""Format large numbers with K, M suffix"""
if num >= 1e6:
return f"{num/1e6:.1f}M"
elif num >= 1e3:
return f"{num/1e3:.1f}K"
return str(num)
def fetch_stats():
"""Fetch all Meta Llama 3 model statistics"""
api = HfApi()
# Fetch original models
original_models = [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Meta-Llama-3-70B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct",
"meta-llama/Llama-3.1-405B-FP8",
"meta-llama/Llama-3.2-90B-Vision-Instruct",
"meta-llama/Llama-3.2-11B-Vision-Instruct",
"meta-llama/Llama-3.2-3B-Instruct-QLORA_INT4_EO8",
"meta-llama/Llama-3.2-3B-Instruct-SpinQuant_INT4_EO8",
"meta-llama/Llama-3.2-1B-Instruct-SpinQuant_INT4_EO8",
"meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8",
"meta-llama/Llama-Guard-3-11B-Vision",
"meta-llama/Llama-3.2-1B",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.2-3B",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.1-8B",
"meta-llama/Llama-Guard-3-8B",
"meta-llama/Meta-Llama-3-70B",
"meta-llama/Meta-Llama-3-8B-Instruct",
"meta-llama/Meta-Llama-3-8B",
"meta-llama/Llama-3.2-90B-Vision",
"meta-llama/Llama-3.2-11B-Vision",
"meta-llama/Llama-Guard-3-1B",
"meta-llama/Llama-Guard-3-1B-INT4",
"meta-llama/Llama-3.1-405B-Instruct-FP8",
"meta-llama/Llama-3.1-405B-Instruct",
"meta-llama/Llama-3.1-405B",
"meta-llama/Llama-3.1-70B",
"meta-llama/Llama-3.1-8B-Instruct",
"meta-llama/Llama-Guard-3-8B-INT8"
]
original_stats = []
for model_id in original_models:
try:
info = api.model_info(model_id)
original_stats.append({
'model_id': model_id,
'downloads_30d': info.downloads if hasattr(info, 'downloads') else 0,
'likes': info.likes if hasattr(info, 'likes') else 0
})
except Exception as e:
print(f"Error fetching {model_id}: {str(e)}")
model_types = ["adapter", "finetune", "merge", "quantized"]
base_models = [
"Llama-3.3-70B-Instruct",
"Meta-Llama-3-70B-Instruct",
"Llama-3.1-70B-Instruct",
"Llama-3.1-405B-FP8",
"Llama-3.2-90B-Vision-Instruct",
"Llama-3.2-11B-Vision-Instruct",
"Llama-3.2-3B-Instruct-QLORA_INT4_EO8",
"Llama-3.2-3B-Instruct-SpinQuant_INT4_EO8",
"Llama-3.2-1B-Instruct-SpinQuant_INT4_EO8",
"Llama-3.2-1B-Instruct-QLORA_INT4_EO8",
"Llama-Guard-3-11B-Vision",
"Llama-3.2-1B",
"Llama-3.2-1B-Instruct",
"Llama-3.2-3B",
"Llama-3.2-3B-Instruct",
"Llama-3.1-8B",
"Llama-Guard-3-8B",
"Meta-Llama-3-70B",
"Meta-Llama-3-8B-Instruct",
"Meta-Llama-3-8B",
"Llama-3.2-90B-Vision",
"Llama-3.2-11B-Vision",
"Llama-Guard-3-1B",
"Llama-Guard-3-1B-INT4",
"Llama-3.1-405B-Instruct-FP8",
"Llama-3.1-405B-Instruct",
"Llama-3.1-405B",
"Llama-3.1-70B",
"Llama-3.1-8B-Instruct",
"Llama-Guard-3-8B-INT8"
]
derivative_stats = []
for base_model in base_models:
for model_type in model_types:
try:
models = list(api.list_models(
filter=f"base_model:{model_type}:meta-llama/{base_model}",
full=True
))
# Add each model to our stats
for model in models:
derivative_stats.append({
'base_model': f"meta-llama/{base_model}",
'model_type': model_type,
'model_id': model.id,
'downloads_30d': model.downloads if hasattr(model, 'downloads') else 0,
'likes': model.likes if hasattr(model, 'likes') else 0
})
except Exception as e:
print(f"Error fetching {model_type} models for {base_model}: {str(e)}")
# Create DataFrames
original_df = pd.DataFrame(original_stats, columns=['model_id', 'downloads_30d', 'likes'])
derivative_df = pd.DataFrame(derivative_stats, columns=['base_model', 'model_type', 'model_id', 'downloads_30d', 'likes'])
return original_df, derivative_df
def create_stats_html():
"""Create HTML for displaying statistics"""
original_df, derivative_df = fetch_stats()
# Create summary statistics
total_originals = len(original_df)
total_derivatives = len(derivative_df)
total_downloads_orig = original_df['downloads_30d'].sum()
total_downloads_deriv = derivative_df['downloads_30d'].sum()
# Create derivative type distribution chart
if len(derivative_df) > 0:
# Create distribution by model type
type_dist = derivative_df.groupby('model_type').agg({
'model_id': 'count',
'downloads_30d': 'sum'
}).reset_index()
type_dist = derivative_df.groupby('model_type').agg({
'model_id': 'count',
'downloads_30d': 'sum'
}).reset_index()
type_dist['model_type'] = type_dist['model_type'].str.capitalize()
type_dist = type_dist.sort_values('downloads_30d', ascending=True)
fig_types = go.Figure(data=[
go.Bar(
x=list(type_dist['model_type']), # Convert to list
y=list(type_dist['downloads_30d'].values), # Convert series to list of values
marker_color='rgb(55, 83, 109)'
)
])
fig_types.update_layout(
title='Downloads by Model Type',
#xaxis_title='Model Type',
yaxis_title='Downloads',
plot_bgcolor='white',
showlegend=False,
bargap=0.3
)
fig_types.update_traces(
text=type_dist['downloads_30d'].apply(format_number),
textposition='outside'
)
else:
fig_types = px.bar(title='No data available')
if len(derivative_df) > 0:
top_models = derivative_df.nlargest(10, 'downloads_30d')[
['model_id', 'model_type', 'downloads_30d', 'likes']
].copy() # Create a copy to avoid SettingWithCopyWarning
# Capitalize model types in the table
top_models['model_type'] = top_models['model_type'].str.capitalize()
# Format download numbers
top_models['downloads_30d'] = top_models['downloads_30d'].apply(format_number)
# Create clickable links for model_id
top_models['model_id'] = top_models['model_id'].apply(
lambda x: f'<a href="https://huggingface.co/{x}" target="_blank" onclick="window.open(\'https://huggingface.co/{x}\', \'_blank\')">{x}</a>'
)
else:
top_models = pd.DataFrame(columns=['model_id', 'model_type', 'downloads_30d', 'likes'])
summary_html = f"""
<div style='padding: 20px; background-color: #f5f5f5; border-radius: 10px; margin-bottom: 20px;'>
<h3 style='color: #333333;'>Summary Statistics</h3>
<p style='color: #333333;'>Derivative Models Downloads: {format_number(total_downloads_deriv)} ({total_derivatives} models)</p>
<p style='color: #333333;'>Original Models Downloads: {format_number(total_downloads_orig)} ({total_originals} models)</p>
<p style='color: #333333;'>Last Updated: {datetime.now().strftime('%Y-%m-%d %H:%M UTC')}</p>
<p style='color: #333333; font-size: 10px;'>* Last 30 days downloads. Includes models from the 3, 3.1, 3.2, and 3.3 versions</p>
</div>
"""
return summary_html, fig_types, top_models
def create_interface():
"""Create Gradio interface"""
with gr.Blocks(theme=gr.themes.Soft()) as interface:
gr.HTML("<h1 style='text-align: center;'>Meta Llama3 Models Stats</h1>")
with gr.Row():
with gr.Column():
summary_html = gr.HTML()
with gr.Column():
plot = gr.Plot()
with gr.Row():
table = gr.DataFrame(
headers=["Model ID", "Type", "Downloads (30d)", "Likes"],
label="Top 10 Most Downloaded Models",
wrap=True,
datatype=["html", "str", "str", "number"]
)
def update_stats():
summary, fig, top_models = create_stats_html()
return summary, fig, top_models
interface.load(update_stats,
outputs=[summary_html, plot, table])
return interface
# Create and launch the interface
demo = create_interface()
demo.launch() |