Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -42,7 +42,6 @@ def fetch_stats():
|
|
| 42 |
except Exception as e:
|
| 43 |
print(f"Error fetching {model_id}: {str(e)}")
|
| 44 |
|
| 45 |
-
# Fetch derivative models - using the tag format that works
|
| 46 |
model_types = ["adapter", "finetune", "merge", "quantized"]
|
| 47 |
base_models = [
|
| 48 |
"DeepSeek-R1",
|
|
@@ -60,7 +59,6 @@ def fetch_stats():
|
|
| 60 |
for base_model in base_models:
|
| 61 |
for model_type in model_types:
|
| 62 |
try:
|
| 63 |
-
# Get models for this type
|
| 64 |
models = list(api.list_models(
|
| 65 |
filter=f"base_model:{model_type}:deepseek-ai/{base_model}",
|
| 66 |
full=True
|
|
@@ -88,31 +86,27 @@ def create_stats_html():
|
|
| 88 |
"""Create HTML for displaying statistics"""
|
| 89 |
original_df, derivative_df = fetch_stats()
|
| 90 |
|
| 91 |
-
# Create summary statistics
|
| 92 |
total_originals = len(original_df)
|
| 93 |
total_derivatives = len(derivative_df)
|
| 94 |
total_downloads_orig = original_df['downloads_30d'].sum()
|
| 95 |
total_downloads_deriv = derivative_df['downloads_30d'].sum()
|
| 96 |
|
| 97 |
-
# Create derivative type distribution chart
|
| 98 |
if len(derivative_df) > 0:
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
y='downloads_30d',
|
| 110 |
-
title='Total Downloads by Model Type',
|
| 111 |
-
labels={'downloads_30d': 'Downloads', 'model_type': 'Model Type'},
|
| 112 |
-
text=type_dist['downloads_30d'].apply(format_number)
|
| 113 |
-
)
|
| 114 |
|
| 115 |
-
# Update layout for log scale and better appearance
|
| 116 |
fig_types.update_layout(
|
| 117 |
yaxis=dict(
|
| 118 |
type='log',
|
|
@@ -120,8 +114,8 @@ def create_stats_html():
|
|
| 120 |
),
|
| 121 |
showlegend=False,
|
| 122 |
plot_bgcolor='white',
|
| 123 |
-
autosize=True,
|
| 124 |
-
margin=dict(
|
| 125 |
l=50,
|
| 126 |
r=50,
|
| 127 |
t=100,
|
|
@@ -130,13 +124,11 @@ def create_stats_html():
|
|
| 130 |
)
|
| 131 |
)
|
| 132 |
|
| 133 |
-
# Update bars and text
|
| 134 |
fig_types.update_traces(
|
| 135 |
textposition='outside',
|
| 136 |
cliponaxis=False
|
| 137 |
)
|
| 138 |
|
| 139 |
-
# Configure for responsive behavior
|
| 140 |
fig_types.update_layout(
|
| 141 |
{
|
| 142 |
'xaxis': {'automargin': True},
|
|
@@ -152,7 +144,7 @@ def create_stats_html():
|
|
| 152 |
if len(derivative_df) > 0:
|
| 153 |
top_models = derivative_df.nlargest(10, 'downloads_30d')[
|
| 154 |
['model_id', 'model_type', 'downloads_30d', 'likes']
|
| 155 |
-
].copy()
|
| 156 |
|
| 157 |
# Capitalize model types in the table
|
| 158 |
top_models['model_type'] = top_models['model_type'].str.capitalize()
|
|
|
|
| 42 |
except Exception as e:
|
| 43 |
print(f"Error fetching {model_id}: {str(e)}")
|
| 44 |
|
|
|
|
| 45 |
model_types = ["adapter", "finetune", "merge", "quantized"]
|
| 46 |
base_models = [
|
| 47 |
"DeepSeek-R1",
|
|
|
|
| 59 |
for base_model in base_models:
|
| 60 |
for model_type in model_types:
|
| 61 |
try:
|
|
|
|
| 62 |
models = list(api.list_models(
|
| 63 |
filter=f"base_model:{model_type}:deepseek-ai/{base_model}",
|
| 64 |
full=True
|
|
|
|
| 86 |
"""Create HTML for displaying statistics"""
|
| 87 |
original_df, derivative_df = fetch_stats()
|
| 88 |
|
|
|
|
| 89 |
total_originals = len(original_df)
|
| 90 |
total_derivatives = len(derivative_df)
|
| 91 |
total_downloads_orig = original_df['downloads_30d'].sum()
|
| 92 |
total_downloads_deriv = derivative_df['downloads_30d'].sum()
|
| 93 |
|
|
|
|
| 94 |
if len(derivative_df) > 0:
|
| 95 |
+
type_dist = derivative_df.groupby('model_type').agg({
|
| 96 |
+
'model_id': 'count',
|
| 97 |
+
'downloads_30d': 'sum'
|
| 98 |
+
}).reset_index()
|
| 99 |
+
type_dist['model_type'] = type_dist['model_type'].str.capitalize()
|
| 100 |
+
type_dist = type_dist.sort_values('downloads_30d', ascending=True)
|
| 101 |
|
| 102 |
+
fig_types = go.Figure(data=[
|
| 103 |
+
go.Bar(
|
| 104 |
+
x=list(type_dist['model_type']),
|
| 105 |
+
y=list(type_dist['downloads_30d'].values),
|
| 106 |
+
marker_color='rgb(55, 83, 109)'
|
| 107 |
+
)
|
| 108 |
+
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
|
|
|
| 110 |
fig_types.update_layout(
|
| 111 |
yaxis=dict(
|
| 112 |
type='log',
|
|
|
|
| 114 |
),
|
| 115 |
showlegend=False,
|
| 116 |
plot_bgcolor='white',
|
| 117 |
+
autosize=True,
|
| 118 |
+
margin=dict(
|
| 119 |
l=50,
|
| 120 |
r=50,
|
| 121 |
t=100,
|
|
|
|
| 124 |
)
|
| 125 |
)
|
| 126 |
|
|
|
|
| 127 |
fig_types.update_traces(
|
| 128 |
textposition='outside',
|
| 129 |
cliponaxis=False
|
| 130 |
)
|
| 131 |
|
|
|
|
| 132 |
fig_types.update_layout(
|
| 133 |
{
|
| 134 |
'xaxis': {'automargin': True},
|
|
|
|
| 144 |
if len(derivative_df) > 0:
|
| 145 |
top_models = derivative_df.nlargest(10, 'downloads_30d')[
|
| 146 |
['model_id', 'model_type', 'downloads_30d', 'likes']
|
| 147 |
+
].copy()
|
| 148 |
|
| 149 |
# Capitalize model types in the table
|
| 150 |
top_models['model_type'] = top_models['model_type'].str.capitalize()
|