Spaces:
Running
on
Zero
Running
on
Zero
Enhanced YOLOv11 SAHI Demo with Dynamic Model Loading, UI Controls and MCP Compatibility
#5
by
atalaydenknalbant
- opened
app.py
CHANGED
@@ -6,10 +6,9 @@ import sahi.slicing
|
|
6 |
from PIL import Image
|
7 |
import numpy
|
8 |
from ultralytics import YOLO
|
9 |
-
|
10 |
-
|
11 |
import sys
|
12 |
import types
|
|
|
13 |
if 'huggingface_hub.utils._errors' not in sys.modules:
|
14 |
mock_errors = types.ModuleType('_errors')
|
15 |
mock_errors.RepositoryNotFoundError = Exception
|
@@ -37,15 +36,33 @@ sahi.utils.file.download_from_url(
|
|
37 |
"highway3.jpg",
|
38 |
)
|
39 |
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
def sahi_yolo_inference(
|
48 |
image,
|
|
|
|
|
|
|
49 |
slice_height=512,
|
50 |
slice_width=512,
|
51 |
overlap_height_ratio=0.2,
|
@@ -55,6 +72,29 @@ def sahi_yolo_inference(
|
|
55 |
postprocess_match_threshold=0.5,
|
56 |
postprocess_class_agnostic=False,
|
57 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
image_width, image_height = image.size
|
60 |
sliced_bboxes = sahi.slicing.get_slice_bboxes(
|
@@ -71,18 +111,24 @@ def sahi_yolo_inference(
|
|
71 |
f"{len(sliced_bboxes)} slices are too much for huggingface spaces, try smaller slice size."
|
72 |
)
|
73 |
|
74 |
-
#
|
75 |
prediction_result_1 = sahi.predict.get_prediction(
|
76 |
-
image=image, detection_model=model
|
77 |
)
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
visual_result_1 = sahi.utils.cv.visualize_object_predictions(
|
80 |
image=numpy.array(image),
|
81 |
object_prediction_list=prediction_result_1.object_prediction_list,
|
82 |
)
|
83 |
output_1 = Image.fromarray(visual_result_1["image"])
|
84 |
|
85 |
-
#
|
86 |
prediction_result_2 = sahi.predict.get_sliced_prediction(
|
87 |
image=image,
|
88 |
detection_model=model,
|
@@ -95,6 +141,13 @@ def sahi_yolo_inference(
|
|
95 |
postprocess_match_threshold=postprocess_match_threshold,
|
96 |
postprocess_class_agnostic=postprocess_class_agnostic,
|
97 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
visual_result_2 = sahi.utils.cv.visualize_object_predictions(
|
99 |
image=numpy.array(image),
|
100 |
object_prediction_list=prediction_result_2.object_prediction_list,
|
@@ -105,48 +158,118 @@ def sahi_yolo_inference(
|
|
105 |
return output_1, output_2
|
106 |
|
107 |
|
108 |
-
|
109 |
-
gr.
|
110 |
-
gr.
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from PIL import Image
|
7 |
import numpy
|
8 |
from ultralytics import YOLO
|
|
|
|
|
9 |
import sys
|
10 |
import types
|
11 |
+
|
12 |
if 'huggingface_hub.utils._errors' not in sys.modules:
|
13 |
mock_errors = types.ModuleType('_errors')
|
14 |
mock_errors.RepositoryNotFoundError = Exception
|
|
|
36 |
"highway3.jpg",
|
37 |
)
|
38 |
|
39 |
+
# Global model variable
|
40 |
+
model = None
|
41 |
|
42 |
+
def load_yolo_model(model_name, confidence_threshold=0.5):
|
43 |
+
"""
|
44 |
+
Loads a YOLOv11 detection model.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
model_name (str): The name of the YOLOv11 model to load (e.g., "yolo11n.pt").
|
48 |
+
confidence_threshold (float): The confidence threshold for object detection.
|
49 |
|
50 |
+
Returns:
|
51 |
+
AutoDetectionModel: The loaded SAHI AutoDetectionModel.
|
52 |
+
"""
|
53 |
+
global model
|
54 |
+
model_path = model_name
|
55 |
+
model = AutoDetectionModel.from_pretrained(
|
56 |
+
model_type="ultralytics", model_path=model_path, device="cpu",
|
57 |
+
confidence_threshold=confidence_threshold, image_size=IMAGE_SIZE
|
58 |
+
)
|
59 |
+
return model
|
60 |
|
61 |
def sahi_yolo_inference(
|
62 |
image,
|
63 |
+
yolo_model_name,
|
64 |
+
confidence_threshold,
|
65 |
+
max_detections,
|
66 |
slice_height=512,
|
67 |
slice_width=512,
|
68 |
overlap_height_ratio=0.2,
|
|
|
72 |
postprocess_match_threshold=0.5,
|
73 |
postprocess_class_agnostic=False,
|
74 |
):
|
75 |
+
"""
|
76 |
+
Performs object detection using SAHI with a specified YOLOv11 model.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
image (PIL.Image.Image): The input image for detection.
|
80 |
+
yolo_model_name (str): The name of the YOLOv11 model to use for inference.
|
81 |
+
confidence_threshold (float): The confidence threshold for object detection.
|
82 |
+
max_detections (int): The maximum number of detections to return.
|
83 |
+
slice_height (int): The height of each slice for sliced inference.
|
84 |
+
slice_width (int): The width of each slice for sliced inference.
|
85 |
+
overlap_height_ratio (float): The overlap ratio for slice height.
|
86 |
+
overlap_width_ratio (float): The overlap ratio for slice width.
|
87 |
+
postprocess_type (str): The type of postprocessing to apply ("NMS" or "GREEDYNMM").
|
88 |
+
postprocess_match_metric (str): The metric for postprocessing matching ("IOU" or "IOS").
|
89 |
+
postprocess_match_threshold (float): The threshold for postprocessing matching.
|
90 |
+
postprocess_class_agnostic (bool): Whether postprocessing should be class agnostic.
|
91 |
+
|
92 |
+
Returns:
|
93 |
+
tuple: A tuple containing two PIL.Image.Image objects:
|
94 |
+
- The image with standard YOLO inference results.
|
95 |
+
- The image with SAHI sliced YOLO inference results.
|
96 |
+
"""
|
97 |
+
load_yolo_model(yolo_model_name, confidence_threshold)
|
98 |
|
99 |
image_width, image_height = image.size
|
100 |
sliced_bboxes = sahi.slicing.get_slice_bboxes(
|
|
|
111 |
f"{len(sliced_bboxes)} slices are too much for huggingface spaces, try smaller slice size."
|
112 |
)
|
113 |
|
114 |
+
# Standard inference
|
115 |
prediction_result_1 = sahi.predict.get_prediction(
|
116 |
+
image=image, detection_model=model,
|
117 |
)
|
118 |
+
|
119 |
+
# Filter by max_detections for standard inference
|
120 |
+
if max_detections is not None and len(prediction_result_1.object_prediction_list) > max_detections:
|
121 |
+
prediction_result_1.object_prediction_list = sorted(
|
122 |
+
prediction_result_1.object_prediction_list, key=lambda x: x.score.value, reverse=True
|
123 |
+
)[:max_detections]
|
124 |
+
|
125 |
visual_result_1 = sahi.utils.cv.visualize_object_predictions(
|
126 |
image=numpy.array(image),
|
127 |
object_prediction_list=prediction_result_1.object_prediction_list,
|
128 |
)
|
129 |
output_1 = Image.fromarray(visual_result_1["image"])
|
130 |
|
131 |
+
# Sliced inference
|
132 |
prediction_result_2 = sahi.predict.get_sliced_prediction(
|
133 |
image=image,
|
134 |
detection_model=model,
|
|
|
141 |
postprocess_match_threshold=postprocess_match_threshold,
|
142 |
postprocess_class_agnostic=postprocess_class_agnostic,
|
143 |
)
|
144 |
+
|
145 |
+
# Filter by max_detections for sliced inference
|
146 |
+
if max_detections is not None and len(prediction_result_2.object_prediction_list) > max_detections:
|
147 |
+
prediction_result_2.object_prediction_list = sorted(
|
148 |
+
prediction_result_2.object_prediction_list, key=lambda x: x.score.value, reverse=True
|
149 |
+
)[:max_detections]
|
150 |
+
|
151 |
visual_result_2 = sahi.utils.cv.visualize_object_predictions(
|
152 |
image=numpy.array(image),
|
153 |
object_prediction_list=prediction_result_2.object_prediction_list,
|
|
|
158 |
return output_1, output_2
|
159 |
|
160 |
|
161 |
+
with gr.Blocks() as app:
|
162 |
+
gr.Markdown("# Small Object Detection with SAHI + YOLOv11")
|
163 |
+
gr.Markdown(
|
164 |
+
"SAHI + YOLOv11 demo for small object detection. "
|
165 |
+
"Upload your own image or click an example image to use."
|
166 |
+
)
|
167 |
+
|
168 |
+
with gr.Row():
|
169 |
+
with gr.Column():
|
170 |
+
original_image_input = gr.Image(type="pil", label="Original Image")
|
171 |
+
yolo_model_dropdown = gr.Dropdown(
|
172 |
+
choices=["yolo11n.pt", "yolo11s.pt", "yolo11m.pt", "yolo11l.pt", "yolo11x.pt"],
|
173 |
+
value="yolo11s.pt",
|
174 |
+
label="YOLOv11 Model",
|
175 |
+
)
|
176 |
+
confidence_threshold_slider = gr.Slider(
|
177 |
+
minimum=0.0,
|
178 |
+
maximum=1.0,
|
179 |
+
step=0.01,
|
180 |
+
value=0.5,
|
181 |
+
label="Confidence Threshold",
|
182 |
+
)
|
183 |
+
max_detections_slider = gr.Slider(
|
184 |
+
minimum=1,
|
185 |
+
maximum=500,
|
186 |
+
step=1,
|
187 |
+
value=300,
|
188 |
+
label="Max Detections",
|
189 |
+
)
|
190 |
+
slice_height_input = gr.Number(value=512, label="Slice Height")
|
191 |
+
slice_width_input = gr.Number(value=512, label="Slice Width")
|
192 |
+
overlap_height_ratio_slider = gr.Slider(
|
193 |
+
minimum=0.0,
|
194 |
+
maximum=1.0,
|
195 |
+
step=0.01,
|
196 |
+
value=0.2,
|
197 |
+
label="Overlap Height Ratio",
|
198 |
+
)
|
199 |
+
overlap_width_ratio_slider = gr.Slider(
|
200 |
+
minimum=0.0,
|
201 |
+
maximum=1.0,
|
202 |
+
step=0.01,
|
203 |
+
value=0.2,
|
204 |
+
label="Overlap Width Ratio",
|
205 |
+
)
|
206 |
+
postprocess_type_dropdown = gr.Dropdown(
|
207 |
+
["NMS", "GREEDYNMM"],
|
208 |
+
type="value",
|
209 |
+
value="NMS",
|
210 |
+
label="Postprocess Type",
|
211 |
+
)
|
212 |
+
postprocess_match_metric_dropdown = gr.Dropdown(
|
213 |
+
["IOU", "IOS"], type="value", value="IOU", label="Postprocess Match Metric"
|
214 |
+
)
|
215 |
+
postprocess_match_threshold_slider = gr.Slider(
|
216 |
+
minimum=0.0,
|
217 |
+
maximum=1.0,
|
218 |
+
step=0.01,
|
219 |
+
value=0.5,
|
220 |
+
label="Postprocess Match Threshold",
|
221 |
+
)
|
222 |
+
postprocess_class_agnostic_checkbox = gr.Checkbox(value=True, label="Postprocess Class Agnostic")
|
223 |
+
|
224 |
+
submit_button = gr.Button("Run Inference")
|
225 |
+
|
226 |
+
with gr.Column():
|
227 |
+
output_standard = gr.Image(type="pil", label="YOLOv11 Standard")
|
228 |
+
output_sahi_sliced = gr.Image(type="pil", label="YOLOv11 + SAHI Sliced")
|
229 |
+
|
230 |
+
gr.Examples(
|
231 |
+
examples=[
|
232 |
+
["apple_tree.jpg", "yolo11s.pt", 0.5, 300, 256, 256, 0.2, 0.2, "NMS", "IOU", 0.4, True],
|
233 |
+
["highway.jpg", "yolo11s.pt", 0.5, 300, 256, 256, 0.2, 0.2, "NMS", "IOU", 0.4, True],
|
234 |
+
["highway2.jpg", "yolo11s.pt", 0.5, 300, 512, 512, 0.2, 0.2, "NMS", "IOU", 0.4, True],
|
235 |
+
["highway3.jpg", "yolo11s.pt", 0.5, 300, 512, 512, 0.2, 0.2, "NMS", "IOU", 0.4, True],
|
236 |
+
],
|
237 |
+
inputs=[
|
238 |
+
original_image_input,
|
239 |
+
yolo_model_dropdown,
|
240 |
+
confidence_threshold_slider,
|
241 |
+
max_detections_slider,
|
242 |
+
slice_height_input,
|
243 |
+
slice_width_input,
|
244 |
+
overlap_height_ratio_slider,
|
245 |
+
overlap_width_ratio_slider,
|
246 |
+
postprocess_type_dropdown,
|
247 |
+
postprocess_match_metric_dropdown,
|
248 |
+
postprocess_match_threshold_slider,
|
249 |
+
postprocess_class_agnostic_checkbox,
|
250 |
+
],
|
251 |
+
outputs=[output_standard, output_sahi_sliced],
|
252 |
+
fn=sahi_yolo_inference,
|
253 |
+
cache_examples=True,
|
254 |
+
)
|
255 |
+
|
256 |
+
submit_button.click(
|
257 |
+
fn=sahi_yolo_inference,
|
258 |
+
inputs=[
|
259 |
+
original_image_input,
|
260 |
+
yolo_model_dropdown,
|
261 |
+
confidence_threshold_slider,
|
262 |
+
max_detections_slider,
|
263 |
+
slice_height_input,
|
264 |
+
slice_width_input,
|
265 |
+
overlap_height_ratio_slider,
|
266 |
+
overlap_width_ratio_slider,
|
267 |
+
postprocess_type_dropdown,
|
268 |
+
postprocess_match_metric_dropdown,
|
269 |
+
postprocess_match_threshold_slider,
|
270 |
+
postprocess_class_agnostic_checkbox,
|
271 |
+
],
|
272 |
+
outputs=[output_standard, output_sahi_sliced],
|
273 |
+
)
|
274 |
+
|
275 |
+
app.launch(mcp_server=True)
|