Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import argparse | |
import os | |
import time | |
import gc | |
from os import path | |
import shutil | |
from datetime import datetime | |
import traceback | |
from safetensors.torch import load_file | |
from huggingface_hub import hf_hub_download | |
import gradio as gr | |
import torch | |
from diffusers import FluxPipeline | |
from diffusers.pipelines.stable_diffusion import safety_checker | |
from PIL import Image | |
# Setup and initialization code | |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
os.environ["TRANSFORMERS_CACHE"] = cache_path | |
os.environ["HF_HUB_CACHE"] = cache_path | |
os.environ["HF_HOME"] = cache_path | |
# GPU λ©λͺ¨λ¦¬ μ€μ μ΅μ ν | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.benchmark = True # λ°λ³΅μ μΈ ν¬κΈ°μ μ λ ₯μ λν΄ μ±λ₯ ν₯μ | |
def filter_prompt(prompt): | |
# λΆμ μ ν ν€μλ λͺ©λ‘ | |
inappropriate_keywords = [ | |
# μλ/μ±μ ν€μλ | |
"nude", "naked", "nsfw", "porn", "sex", "explicit", "adult", "xxx", | |
"erotic", "sensual", "seductive", "provocative", "intimate", | |
# νλ ₯μ ν€μλ | |
"violence", "gore", "blood", "death", "kill", "murder", "torture", | |
# κΈ°ν λΆμ μ ν ν€μλ | |
"drug", "suicide", "abuse", "hate", "discrimination" | |
] | |
prompt_lower = prompt.lower() | |
# λΆμ μ ν ν€μλ μ²΄ν¬ | |
for keyword in inappropriate_keywords: | |
if keyword in prompt_lower: | |
return False, "λΆμ μ ν λ΄μ©μ΄ ν¬ν¨λ ν둬ννΈμ λλ€." | |
return True, prompt | |
class timer: | |
def __init__(self, method_name="timed process"): | |
self.method = method_name | |
def __enter__(self): | |
self.start = time.time() | |
print(f"{self.method} starts") | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
end = time.time() | |
print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
# κΈλ‘λ² λ³μλ‘ νμ΄νλΌμΈ μ μΈ | |
pipe = None | |
# λͺ¨λΈ μ΄κΈ°ν ν¨μ (μ§μ° λ‘λ©) | |
def initialize_model(): | |
global pipe | |
# μ΄λ―Έ λ‘λλ κ²½μ° λ€μ λ‘λνμ§ μμ | |
if pipe is not None: | |
return | |
try: | |
if not path.exists(cache_path): | |
os.makedirs(cache_path, exist_ok=True) | |
# λ©λͺ¨λ¦¬ ν보λ₯Ό μν κ°λΉμ§ 컬λ μ μ€ν | |
gc.collect() | |
torch.cuda.empty_cache() | |
with timer("λͺ¨λΈ λ‘λ©"): | |
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) | |
lora_path = hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors") | |
pipe.load_lora_weights(lora_path) | |
pipe.fuse_lora(lora_scale=0.125) | |
pipe.to(device="cuda", dtype=torch.bfloat16) | |
# μμ κ²μ¬κΈ° μΆκ° | |
pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker") | |
print("λͺ¨λΈ λ‘λ© μλ£") | |
return True | |
except Exception as e: | |
print(f"λͺ¨λΈ λ‘λ© μ€ μ€λ₯ λ°μ: {str(e)}") | |
traceback.print_exc() | |
return False | |
css = """ | |
footer {display: none !important} | |
.gradio-container { | |
max-width: 1200px; | |
margin: auto; | |
} | |
.contain { | |
background: rgba(255, 255, 255, 0.05); | |
border-radius: 12px; | |
padding: 20px; | |
} | |
.generate-btn { | |
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important; | |
border: none !important; | |
color: white !important; | |
} | |
.generate-btn:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 5px 15px rgba(0,0,0,0.2); | |
} | |
.title { | |
text-align: center; | |
font-size: 2.5em; | |
font-weight: bold; | |
margin-bottom: 1em; | |
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
} | |
.output-image { | |
width: 100% !important; | |
max-width: 100% !important; | |
} | |
.contain > div { | |
width: 100% !important; | |
max-width: 100% !important; | |
} | |
.fixed-width { | |
width: 100% !important; | |
max-width: 100% !important; | |
} | |
.loading-indicator { | |
text-align: center; | |
padding: 20px; | |
font-weight: bold; | |
color: #4B79A1; | |
} | |
.error-message { | |
background-color: rgba(255, 0, 0, 0.1); | |
color: red; | |
padding: 10px; | |
border-radius: 8px; | |
margin-top: 10px; | |
text-align: center; | |
} | |
""" | |
# Create Gradio interface | |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: | |
gr.HTML('<div class="title">AI Image Generator</div>') | |
gr.HTML('<div style="text-align: center; margin-bottom: 2em; color: #666;">Create stunning images from your descriptions</div>') | |
gr.HTML(""" | |
<div style="color: red; margin-bottom: 1em; text-align: center; padding: 10px; background: rgba(255,0,0,0.1); border-radius: 8px;"> | |
β οΈ Explicit or inappropriate content cannot be generated. | |
</div> | |
""") | |
# μν νμ λ³μ | |
error_message = gr.HTML(visible=False, elem_classes=["error-message"]) | |
loading_status = gr.HTML(visible=False, elem_classes=["loading-indicator"]) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
prompt = gr.Textbox( | |
label="Image Description", | |
placeholder="Describe the image you want to create...", | |
lines=3 | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=1152, | |
step=64, | |
value=1024 | |
) | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=1152, | |
step=64, | |
value=1024 | |
) | |
with gr.Row(): | |
steps = gr.Slider( | |
label="Inference Steps", | |
minimum=6, | |
maximum=25, | |
step=1, | |
value=8 | |
) | |
scales = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.0, | |
maximum=5.0, | |
step=0.1, | |
value=3.5 | |
) | |
def get_random_seed(): | |
return int(torch.randint(0, 1000000, (1,)).item()) | |
seed = gr.Number( | |
label="Seed (random by default, set for reproducibility)", | |
value=get_random_seed(), | |
precision=0 | |
) | |
randomize_seed = gr.Button("π² Randomize Seed", elem_classes=["generate-btn"]) | |
generate_btn = gr.Button( | |
"β¨ Generate Image", | |
elem_classes=["generate-btn"] | |
) | |
gr.HTML(""" | |
<div style="margin-top: 1em; padding: 1em; border-radius: 8px; background: rgba(255, 255, 255, 0.05);"> | |
<h4 style="margin: 0 0 0.5em 0;">Example Prompts:</h4> | |
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;"> | |
<p style="font-weight: bold; margin: 0 0 0.5em 0;">π Cinematic Landscape</p> | |
<p style="margin: 0; font-style: italic;">"A breathtaking mountain vista at golden hour, dramatic sunbeams piercing through clouds, snow-capped peaks reflecting warm light, ultra-high detail photography, artistically composed, award-winning landscape photo, shot on Hasselblad"</p> | |
</div> | |
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;"> | |
<p style="font-weight: bold; margin: 0 0 0.5em 0;">πΌοΈ Fantasy Portrait</p> | |
<p style="margin: 0; font-style: italic;">"Ethereal portrait of an elven queen with flowing silver hair, adorned with luminescent crystals, intricate crown of twisted gold and moonstone, soft ethereal lighting, detailed facial features, fantasy art style, highly detailed, painted by Artgerm and Charlie Bowater"</p> | |
</div> | |
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;"> | |
<p style="font-weight: bold; margin: 0 0 0.5em 0;">π Cyberpunk Scene</p> | |
<p style="margin: 0; font-style: italic;">"Neon-lit cyberpunk street market in rain, holographic advertisements reflecting in puddles, street vendors with glowing cyber-augmentations, dense urban environment, atmospheric fog, cinematic lighting, inspired by Blade Runner 2049"</p> | |
</div> | |
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;"> | |
<p style="font-weight: bold; margin: 0 0 0.5em 0;">π¨ Abstract Art</p> | |
<p style="margin: 0; font-style: italic;">"Vibrant abstract composition of flowing liquid colors, dynamic swirls of iridescent purples and teals, golden geometric patterns emerging from chaos, luxury art style, ultra-detailed, painted in oil on canvas, inspired by James Jean and Gustav Klimt"</p> | |
</div> | |
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;"> | |
<p style="font-weight: bold; margin: 0 0 0.5em 0;">πΏ Macro Nature</p> | |
<p style="margin: 0; font-style: italic;">"Extreme macro photography of a dewdrop on a butterfly wing, rainbow light refraction, crystalline clarity, intricate wing scales visible, natural bokeh background, professional studio lighting, shot with Canon MP-E 65mm lens"</p> | |
</div> | |
</div> | |
""") | |
with gr.Column(scale=4, elem_classes=["fixed-width"]): | |
output = gr.Image( | |
label="Generated Image", | |
elem_id="output-image", | |
elem_classes=["output-image", "fixed-width"] | |
) | |
def process_image(height, width, steps, scales, prompt, seed): | |
# λͺ¨λΈ μ΄κΈ°ν μν νμΈ | |
if pipe is None: | |
loading_status.update("λͺ¨λΈμ λ‘λ© μ€μ λλ€... μ²μ μ€ν μ μκ°μ΄ μμλ μ μμ΅λλ€.", visible=True) | |
model_loaded = initialize_model() | |
if not model_loaded: | |
error_message.update("λͺ¨λΈ λ‘λ© μ€ μ€λ₯κ° λ°μνμ΅λλ€. νμ΄μ§λ₯Ό μλ‘κ³ μΉ¨νκ³ λ€μ μλν΄ μ£ΌμΈμ.", visible=True) | |
loading_status.update(visible=False) | |
return None | |
loading_status.update(visible=False) | |
# μ λ ₯κ° κ²μ¦ | |
if not prompt or prompt.strip() == "": | |
error_message.update("μ΄λ―Έμ§ μ€λͺ μ μ λ ₯ν΄μ£ΌμΈμ.", visible=True) | |
return None | |
# ν둬ννΈ νν°λ§ | |
is_safe, filtered_prompt = filter_prompt(prompt) | |
if not is_safe: | |
error_message.update("λΆμ μ ν λ΄μ©μ΄ ν¬ν¨λ ν둬ννΈμ λλ€.", visible=True) | |
return None | |
# μλ¬ λ©μμ§ μ΄κΈ°ν | |
error_message.update(visible=False) | |
loading_status.update("μ΄λ―Έμ§λ₯Ό μμ± μ€μ λλ€...", visible=True) | |
try: | |
# λ©λͺ¨λ¦¬ ν보λ₯Ό μν κ°λΉμ§ μ½λ μ | |
gc.collect() | |
torch.cuda.empty_cache() | |
# μλ κ° νμΈ λ° λ³΄μ | |
if seed is None or not isinstance(seed, (int, float)): | |
seed = get_random_seed() | |
else: | |
seed = int(seed) # νμ λ³ν μμ νκ² μ²λ¦¬ | |
# μ΄λ―Έμ§ μμ± | |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
# λμ΄μ λλΉλ₯Ό 64μ λ°°μλ‘ μ‘°μ (FLUX λͺ¨λΈ μꡬμ¬ν) | |
height = (int(height) // 64) * 64 | |
width = (int(width) // 64) * 64 | |
# μμ μ₯μΉ - μ΅λκ° μ ν | |
steps = min(int(steps), 25) | |
scales = max(min(float(scales), 5.0), 0.0) | |
generated_image = pipe( | |
prompt=[filtered_prompt], | |
generator=generator, | |
num_inference_steps=steps, | |
guidance_scale=scales, | |
height=height, | |
width=width, | |
max_sequence_length=256 | |
).images[0] | |
loading_status.update(visible=False) | |
return generated_image | |
except Exception as e: | |
error_msg = f"μ΄λ―Έμ§ μμ± μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}" | |
print(error_msg) | |
traceback.print_exc() | |
error_message.update(error_msg, visible=True) | |
loading_status.update(visible=False) | |
# μ€λ₯ ν λ©λͺ¨λ¦¬ μ 리 | |
gc.collect() | |
torch.cuda.empty_cache() | |
return None | |
def update_seed(): | |
return get_random_seed() | |
# λ²νΌ ν΄λ¦ μ΄λ²€νΈ - λͺ¨λ UI μμ μ΄κΈ°ν μΆκ° | |
def on_generate_click(height, width, steps, scales, prompt, seed): | |
error_message.update(visible=False) | |
return process_image(height, width, steps, scales, prompt, seed) | |
generate_btn.click( | |
on_generate_click, | |
inputs=[height, width, steps, scales, prompt, seed], | |
outputs=[output] | |
) | |
randomize_seed.click( | |
update_seed, | |
outputs=[seed] | |
) | |
if __name__ == "__main__": | |
# μ± μμ μ λͺ¨λΈ 미리 λ‘λνμ§ μμ (첫 μμ² μ μ§μ° λ‘λ©) | |
demo.queue(max_size=10).launch() |