flx8lora / app.py
fantos's picture
Update app.py
c0a4152 verified
raw
history blame
14.4 kB
import spaces
import argparse
import os
import time
import gc
from os import path
import shutil
from datetime import datetime
import traceback
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
from PIL import Image
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
# GPU λ©”λͺ¨λ¦¬ μ„€μ • μ΅œμ ν™”
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True # 반볡적인 크기의 μž…λ ₯에 λŒ€ν•΄ μ„±λŠ₯ ν–₯상
def filter_prompt(prompt):
# λΆ€μ μ ˆν•œ ν‚€μ›Œλ“œ λͺ©λ‘
inappropriate_keywords = [
# μŒλž€/성적 ν‚€μ›Œλ“œ
"nude", "naked", "nsfw", "porn", "sex", "explicit", "adult", "xxx",
"erotic", "sensual", "seductive", "provocative", "intimate",
# 폭λ ₯적 ν‚€μ›Œλ“œ
"violence", "gore", "blood", "death", "kill", "murder", "torture",
# 기타 λΆ€μ μ ˆν•œ ν‚€μ›Œλ“œ
"drug", "suicide", "abuse", "hate", "discrimination"
]
prompt_lower = prompt.lower()
# λΆ€μ μ ˆν•œ ν‚€μ›Œλ“œ 체크
for keyword in inappropriate_keywords:
if keyword in prompt_lower:
return False, "λΆ€μ μ ˆν•œ λ‚΄μš©μ΄ ν¬ν•¨λœ ν”„λ‘¬ν”„νŠΈμž…λ‹ˆλ‹€."
return True, prompt
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
# κΈ€λ‘œλ²Œ λ³€μˆ˜λ‘œ νŒŒμ΄ν”„λΌμΈ μ„ μ–Έ
pipe = None
# λͺ¨λΈ μ΄ˆκΈ°ν™” ν•¨μˆ˜ (μ§€μ—° λ‘œλ”©)
def initialize_model():
global pipe
# 이미 λ‘œλ“œλœ 경우 λ‹€μ‹œ λ‘œλ“œν•˜μ§€ μ•ŠμŒ
if pipe is not None:
return
try:
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
# λ©”λͺ¨λ¦¬ 확보λ₯Ό μœ„ν•œ κ°€λΉ„μ§€ μ»¬λ ‰μ…˜ μ‹€ν–‰
gc.collect()
torch.cuda.empty_cache()
with timer("λͺ¨λΈ λ‘œλ”©"):
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
lora_path = hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
# μ•ˆμ „ 검사기 μΆ”κ°€
pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
print("λͺ¨λΈ λ‘œλ”© μ™„λ£Œ")
return True
except Exception as e:
print(f"λͺ¨λΈ λ‘œλ”© 쀑 였λ₯˜ λ°œμƒ: {str(e)}")
traceback.print_exc()
return False
css = """
footer {display: none !important}
.gradio-container {
max-width: 1200px;
margin: auto;
}
.contain {
background: rgba(255, 255, 255, 0.05);
border-radius: 12px;
padding: 20px;
}
.generate-btn {
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
border: none !important;
color: white !important;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.title {
text-align: center;
font-size: 2.5em;
font-weight: bold;
margin-bottom: 1em;
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.output-image {
width: 100% !important;
max-width: 100% !important;
}
.contain > div {
width: 100% !important;
max-width: 100% !important;
}
.fixed-width {
width: 100% !important;
max-width: 100% !important;
}
.loading-indicator {
text-align: center;
padding: 20px;
font-weight: bold;
color: #4B79A1;
}
.error-message {
background-color: rgba(255, 0, 0, 0.1);
color: red;
padding: 10px;
border-radius: 8px;
margin-top: 10px;
text-align: center;
}
"""
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.HTML('<div class="title">AI Image Generator</div>')
gr.HTML('<div style="text-align: center; margin-bottom: 2em; color: #666;">Create stunning images from your descriptions</div>')
gr.HTML("""
<div style="color: red; margin-bottom: 1em; text-align: center; padding: 10px; background: rgba(255,0,0,0.1); border-radius: 8px;">
⚠️ Explicit or inappropriate content cannot be generated.
</div>
""")
# μƒνƒœ ν‘œμ‹œ λ³€μˆ˜
error_message = gr.HTML(visible=False, elem_classes=["error-message"])
loading_status = gr.HTML(visible=False, elem_classes=["loading-indicator"])
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(
label="Image Description",
placeholder="Describe the image you want to create...",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
def get_random_seed():
return int(torch.randint(0, 1000000, (1,)).item())
seed = gr.Number(
label="Seed (random by default, set for reproducibility)",
value=get_random_seed(),
precision=0
)
randomize_seed = gr.Button("🎲 Randomize Seed", elem_classes=["generate-btn"])
generate_btn = gr.Button(
"✨ Generate Image",
elem_classes=["generate-btn"]
)
gr.HTML("""
<div style="margin-top: 1em; padding: 1em; border-radius: 8px; background: rgba(255, 255, 255, 0.05);">
<h4 style="margin: 0 0 0.5em 0;">Example Prompts:</h4>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">πŸŒ… Cinematic Landscape</p>
<p style="margin: 0; font-style: italic;">"A breathtaking mountain vista at golden hour, dramatic sunbeams piercing through clouds, snow-capped peaks reflecting warm light, ultra-high detail photography, artistically composed, award-winning landscape photo, shot on Hasselblad"</p>
</div>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">πŸ–ΌοΈ Fantasy Portrait</p>
<p style="margin: 0; font-style: italic;">"Ethereal portrait of an elven queen with flowing silver hair, adorned with luminescent crystals, intricate crown of twisted gold and moonstone, soft ethereal lighting, detailed facial features, fantasy art style, highly detailed, painted by Artgerm and Charlie Bowater"</p>
</div>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">πŸŒƒ Cyberpunk Scene</p>
<p style="margin: 0; font-style: italic;">"Neon-lit cyberpunk street market in rain, holographic advertisements reflecting in puddles, street vendors with glowing cyber-augmentations, dense urban environment, atmospheric fog, cinematic lighting, inspired by Blade Runner 2049"</p>
</div>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">🎨 Abstract Art</p>
<p style="margin: 0; font-style: italic;">"Vibrant abstract composition of flowing liquid colors, dynamic swirls of iridescent purples and teals, golden geometric patterns emerging from chaos, luxury art style, ultra-detailed, painted in oil on canvas, inspired by James Jean and Gustav Klimt"</p>
</div>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">🌿 Macro Nature</p>
<p style="margin: 0; font-style: italic;">"Extreme macro photography of a dewdrop on a butterfly wing, rainbow light refraction, crystalline clarity, intricate wing scales visible, natural bokeh background, professional studio lighting, shot with Canon MP-E 65mm lens"</p>
</div>
</div>
""")
with gr.Column(scale=4, elem_classes=["fixed-width"]):
output = gr.Image(
label="Generated Image",
elem_id="output-image",
elem_classes=["output-image", "fixed-width"]
)
@spaces.GPU
def process_image(height, width, steps, scales, prompt, seed):
# λͺ¨λΈ μ΄ˆκΈ°ν™” μƒνƒœ 확인
if pipe is None:
loading_status.update("λͺ¨λΈμ„ λ‘œλ”© μ€‘μž…λ‹ˆλ‹€... 처음 μ‹€ν–‰ μ‹œ μ‹œκ°„μ΄ μ†Œμš”λ  수 μžˆμŠ΅λ‹ˆλ‹€.", visible=True)
model_loaded = initialize_model()
if not model_loaded:
error_message.update("λͺ¨λΈ λ‘œλ”© 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€. νŽ˜μ΄μ§€λ₯Ό μƒˆλ‘œκ³ μΉ¨ν•˜κ³  λ‹€μ‹œ μ‹œλ„ν•΄ μ£Όμ„Έμš”.", visible=True)
loading_status.update(visible=False)
return None
loading_status.update(visible=False)
# μž…λ ₯κ°’ 검증
if not prompt or prompt.strip() == "":
error_message.update("이미지 μ„€λͺ…을 μž…λ ₯ν•΄μ£Όμ„Έμš”.", visible=True)
return None
# ν”„λ‘¬ν”„νŠΈ 필터링
is_safe, filtered_prompt = filter_prompt(prompt)
if not is_safe:
error_message.update("λΆ€μ μ ˆν•œ λ‚΄μš©μ΄ ν¬ν•¨λœ ν”„λ‘¬ν”„νŠΈμž…λ‹ˆλ‹€.", visible=True)
return None
# μ—λŸ¬ λ©”μ‹œμ§€ μ΄ˆκΈ°ν™”
error_message.update(visible=False)
loading_status.update("이미지λ₯Ό 생성 μ€‘μž…λ‹ˆλ‹€...", visible=True)
try:
# λ©”λͺ¨λ¦¬ 확보λ₯Ό μœ„ν•œ κ°€λΉ„μ§€ μ½œλ ‰μ…˜
gc.collect()
torch.cuda.empty_cache()
# μ‹œλ“œ κ°’ 확인 및 보정
if seed is None or not isinstance(seed, (int, float)):
seed = get_random_seed()
else:
seed = int(seed) # νƒ€μž… λ³€ν™˜ μ•ˆμ „ν•˜κ²Œ 처리
# 이미지 생성
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
generator = torch.Generator(device="cuda").manual_seed(seed)
# 높이와 λ„ˆλΉ„λ₯Ό 64의 배수둜 μ‘°μ • (FLUX λͺ¨λΈ μš”κ΅¬μ‚¬ν•­)
height = (int(height) // 64) * 64
width = (int(width) // 64) * 64
# μ•ˆμ „μž₯치 - μ΅œλŒ€κ°’ μ œν•œ
steps = min(int(steps), 25)
scales = max(min(float(scales), 5.0), 0.0)
generated_image = pipe(
prompt=[filtered_prompt],
generator=generator,
num_inference_steps=steps,
guidance_scale=scales,
height=height,
width=width,
max_sequence_length=256
).images[0]
loading_status.update(visible=False)
return generated_image
except Exception as e:
error_msg = f"이미지 생성 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}"
print(error_msg)
traceback.print_exc()
error_message.update(error_msg, visible=True)
loading_status.update(visible=False)
# 였λ₯˜ ν›„ λ©”λͺ¨λ¦¬ 정리
gc.collect()
torch.cuda.empty_cache()
return None
def update_seed():
return get_random_seed()
# λ²„νŠΌ 클릭 이벀트 - λͺ¨λ“  UI μš”μ†Œ μ΄ˆκΈ°ν™” μΆ”κ°€
def on_generate_click(height, width, steps, scales, prompt, seed):
error_message.update(visible=False)
return process_image(height, width, steps, scales, prompt, seed)
generate_btn.click(
on_generate_click,
inputs=[height, width, steps, scales, prompt, seed],
outputs=[output]
)
randomize_seed.click(
update_seed,
outputs=[seed]
)
if __name__ == "__main__":
# μ•± μ‹œμž‘ μ‹œ λͺ¨λΈ 미리 λ‘œλ“œν•˜μ§€ μ•ŠμŒ (첫 μš”μ²­ μ‹œ μ§€μ—° λ‘œλ”©)
demo.queue(max_size=10).launch()