Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,440 Bytes
176edce d5f9b62 176edce 0b63713 d5f9b62 176edce f8844a3 8d2510b 0b63713 ac3894a 0e7941e 176edce ac3894a 176edce ac3894a d5f9b62 176edce d5f9b62 343fdaf 8d2510b 176edce 343fdaf d5f9b62 343fdaf d5f9b62 8d2510b de7fb8a f8844a3 35695a2 0e7941e f8844a3 0e7941e f8844a3 0e7941e f8844a3 0e7941e f8844a3 de7fb8a 35695a2 66fcae2 35695a2 66fcae2 35695a2 47297cd 35695a2 47297cd d5f9b62 de7fb8a 8d2510b 0e7941e 0b63713 0e7941e 8d2510b b331133 8d2510b 66fcae2 d5f9b62 0e7941e 7b9b23e 0e7941e 3ec2621 0e7941e 3ec2621 18f2392 d5f9b62 18f2392 0e7941e 18f2392 0e7941e f8844a3 18f2392 0e7941e f8844a3 0e7941e 2de95f9 0e7941e 47297cd 3ec2621 ba3c0ae d5f9b62 8d2510b d5f9b62 ba3c0ae 8d2510b d5f9b62 0b34ea3 8d2510b d5f9b62 0b34ea3 d5f9b62 ba3c0ae d5f9b62 f8844a3 18f2392 d5f9b62 18f2392 3ec2621 d5f9b62 3ec2621 ba3c0ae 3ec2621 18f2392 343fdaf 176edce d5f9b62 c0a4152 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
import spaces
import argparse
import os
import time
import gc
from os import path
import shutil
from datetime import datetime
import traceback
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import gradio as gr
import torch
from diffusers import FluxPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
from PIL import Image
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
# GPU λ©λͺ¨λ¦¬ μ€μ μ΅μ ν
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True # λ°λ³΅μ μΈ ν¬κΈ°μ μ
λ ₯μ λν΄ μ±λ₯ ν₯μ
def filter_prompt(prompt):
# λΆμ μ ν ν€μλ λͺ©λ‘
inappropriate_keywords = [
# μλ/μ±μ ν€μλ
"nude", "naked", "nsfw", "porn", "sex", "explicit", "adult", "xxx",
"erotic", "sensual", "seductive", "provocative", "intimate",
# νλ ₯μ ν€μλ
"violence", "gore", "blood", "death", "kill", "murder", "torture",
# κΈ°ν λΆμ μ ν ν€μλ
"drug", "suicide", "abuse", "hate", "discrimination"
]
prompt_lower = prompt.lower()
# λΆμ μ ν ν€μλ 체ν¬
for keyword in inappropriate_keywords:
if keyword in prompt_lower:
return False, "λΆμ μ ν λ΄μ©μ΄ ν¬ν¨λ ν둬ννΈμ
λλ€."
return True, prompt
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
# κΈλ‘λ² λ³μλ‘ νμ΄νλΌμΈ μ μΈ
pipe = None
# λͺ¨λΈ μ΄κΈ°ν ν¨μ (μ§μ° λ‘λ©)
def initialize_model():
global pipe
# μ΄λ―Έ λ‘λλ κ²½μ° λ€μ λ‘λνμ§ μμ
if pipe is not None:
return
try:
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
# λ©λͺ¨λ¦¬ ν보λ₯Ό μν κ°λΉμ§ 컬λ μ
μ€ν
gc.collect()
torch.cuda.empty_cache()
with timer("λͺ¨λΈ λ‘λ©"):
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
lora_path = hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors")
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
# μμ κ²μ¬κΈ° μΆκ°
pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
print("λͺ¨λΈ λ‘λ© μλ£")
return True
except Exception as e:
print(f"λͺ¨λΈ λ‘λ© μ€ μ€λ₯ λ°μ: {str(e)}")
traceback.print_exc()
return False
css = """
footer {display: none !important}
.gradio-container {
max-width: 1200px;
margin: auto;
}
.contain {
background: rgba(255, 255, 255, 0.05);
border-radius: 12px;
padding: 20px;
}
.generate-btn {
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%) !important;
border: none !important;
color: white !important;
}
.generate-btn:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
}
.title {
text-align: center;
font-size: 2.5em;
font-weight: bold;
margin-bottom: 1em;
background: linear-gradient(90deg, #4B79A1 0%, #283E51 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.output-image {
width: 100% !important;
max-width: 100% !important;
}
.contain > div {
width: 100% !important;
max-width: 100% !important;
}
.fixed-width {
width: 100% !important;
max-width: 100% !important;
}
.loading-indicator {
text-align: center;
padding: 20px;
font-weight: bold;
color: #4B79A1;
}
.error-message {
background-color: rgba(255, 0, 0, 0.1);
color: red;
padding: 10px;
border-radius: 8px;
margin-top: 10px;
text-align: center;
}
"""
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.HTML('<div class="title">AI Image Generator</div>')
gr.HTML('<div style="text-align: center; margin-bottom: 2em; color: #666;">Create stunning images from your descriptions</div>')
gr.HTML("""
<div style="color: red; margin-bottom: 1em; text-align: center; padding: 10px; background: rgba(255,0,0,0.1); border-radius: 8px;">
β οΈ Explicit or inappropriate content cannot be generated.
</div>
""")
# μν νμ λ³μ
error_message = gr.HTML(visible=False, elem_classes=["error-message"])
loading_status = gr.HTML(visible=False, elem_classes=["loading-indicator"])
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(
label="Image Description",
placeholder="Describe the image you want to create...",
lines=3
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
def get_random_seed():
return int(torch.randint(0, 1000000, (1,)).item())
seed = gr.Number(
label="Seed (random by default, set for reproducibility)",
value=get_random_seed(),
precision=0
)
randomize_seed = gr.Button("π² Randomize Seed", elem_classes=["generate-btn"])
generate_btn = gr.Button(
"β¨ Generate Image",
elem_classes=["generate-btn"]
)
gr.HTML("""
<div style="margin-top: 1em; padding: 1em; border-radius: 8px; background: rgba(255, 255, 255, 0.05);">
<h4 style="margin: 0 0 0.5em 0;">Example Prompts:</h4>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">π
Cinematic Landscape</p>
<p style="margin: 0; font-style: italic;">"A breathtaking mountain vista at golden hour, dramatic sunbeams piercing through clouds, snow-capped peaks reflecting warm light, ultra-high detail photography, artistically composed, award-winning landscape photo, shot on Hasselblad"</p>
</div>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">πΌοΈ Fantasy Portrait</p>
<p style="margin: 0; font-style: italic;">"Ethereal portrait of an elven queen with flowing silver hair, adorned with luminescent crystals, intricate crown of twisted gold and moonstone, soft ethereal lighting, detailed facial features, fantasy art style, highly detailed, painted by Artgerm and Charlie Bowater"</p>
</div>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">π Cyberpunk Scene</p>
<p style="margin: 0; font-style: italic;">"Neon-lit cyberpunk street market in rain, holographic advertisements reflecting in puddles, street vendors with glowing cyber-augmentations, dense urban environment, atmospheric fog, cinematic lighting, inspired by Blade Runner 2049"</p>
</div>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">π¨ Abstract Art</p>
<p style="margin: 0; font-style: italic;">"Vibrant abstract composition of flowing liquid colors, dynamic swirls of iridescent purples and teals, golden geometric patterns emerging from chaos, luxury art style, ultra-detailed, painted in oil on canvas, inspired by James Jean and Gustav Klimt"</p>
</div>
<div style="background: rgba(75, 121, 161, 0.1); padding: 1em; border-radius: 8px; margin-bottom: 1em;">
<p style="font-weight: bold; margin: 0 0 0.5em 0;">πΏ Macro Nature</p>
<p style="margin: 0; font-style: italic;">"Extreme macro photography of a dewdrop on a butterfly wing, rainbow light refraction, crystalline clarity, intricate wing scales visible, natural bokeh background, professional studio lighting, shot with Canon MP-E 65mm lens"</p>
</div>
</div>
""")
with gr.Column(scale=4, elem_classes=["fixed-width"]):
output = gr.Image(
label="Generated Image",
elem_id="output-image",
elem_classes=["output-image", "fixed-width"]
)
@spaces.GPU
def process_image(height, width, steps, scales, prompt, seed):
# λͺ¨λΈ μ΄κΈ°ν μν νμΈ
if pipe is None:
loading_status.update("λͺ¨λΈμ λ‘λ© μ€μ
λλ€... μ²μ μ€ν μ μκ°μ΄ μμλ μ μμ΅λλ€.", visible=True)
model_loaded = initialize_model()
if not model_loaded:
error_message.update("λͺ¨λΈ λ‘λ© μ€ μ€λ₯κ° λ°μνμ΅λλ€. νμ΄μ§λ₯Ό μλ‘κ³ μΉ¨νκ³ λ€μ μλν΄ μ£ΌμΈμ.", visible=True)
loading_status.update(visible=False)
return None
loading_status.update(visible=False)
# μ
λ ₯κ° κ²μ¦
if not prompt or prompt.strip() == "":
error_message.update("μ΄λ―Έμ§ μ€λͺ
μ μ
λ ₯ν΄μ£ΌμΈμ.", visible=True)
return None
# ν둬ννΈ νν°λ§
is_safe, filtered_prompt = filter_prompt(prompt)
if not is_safe:
error_message.update("λΆμ μ ν λ΄μ©μ΄ ν¬ν¨λ ν둬ννΈμ
λλ€.", visible=True)
return None
# μλ¬ λ©μμ§ μ΄κΈ°ν
error_message.update(visible=False)
loading_status.update("μ΄λ―Έμ§λ₯Ό μμ± μ€μ
λλ€...", visible=True)
try:
# λ©λͺ¨λ¦¬ ν보λ₯Ό μν κ°λΉμ§ μ½λ μ
gc.collect()
torch.cuda.empty_cache()
# μλ κ° νμΈ λ° λ³΄μ
if seed is None or not isinstance(seed, (int, float)):
seed = get_random_seed()
else:
seed = int(seed) # νμ
λ³ν μμ νκ² μ²λ¦¬
# μ΄λ―Έμ§ μμ±
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
generator = torch.Generator(device="cuda").manual_seed(seed)
# λμ΄μ λλΉλ₯Ό 64μ λ°°μλ‘ μ‘°μ (FLUX λͺ¨λΈ μꡬμ¬ν)
height = (int(height) // 64) * 64
width = (int(width) // 64) * 64
# μμ μ₯μΉ - μ΅λκ° μ ν
steps = min(int(steps), 25)
scales = max(min(float(scales), 5.0), 0.0)
generated_image = pipe(
prompt=[filtered_prompt],
generator=generator,
num_inference_steps=steps,
guidance_scale=scales,
height=height,
width=width,
max_sequence_length=256
).images[0]
loading_status.update(visible=False)
return generated_image
except Exception as e:
error_msg = f"μ΄λ―Έμ§ μμ± μ€ μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
print(error_msg)
traceback.print_exc()
error_message.update(error_msg, visible=True)
loading_status.update(visible=False)
# μ€λ₯ ν λ©λͺ¨λ¦¬ μ 리
gc.collect()
torch.cuda.empty_cache()
return None
def update_seed():
return get_random_seed()
# λ²νΌ ν΄λ¦ μ΄λ²€νΈ - λͺ¨λ UI μμ μ΄κΈ°ν μΆκ°
def on_generate_click(height, width, steps, scales, prompt, seed):
error_message.update(visible=False)
return process_image(height, width, steps, scales, prompt, seed)
generate_btn.click(
on_generate_click,
inputs=[height, width, steps, scales, prompt, seed],
outputs=[output]
)
randomize_seed.click(
update_seed,
outputs=[seed]
)
if __name__ == "__main__":
# μ± μμ μ λͺ¨λΈ 미리 λ‘λνμ§ μμ (첫 μμ² μ μ§μ° λ‘λ©)
demo.queue(max_size=10).launch() |