Spaces:
Running
Running
import numpy as np | |
import torch | |
import torch.nn as nn | |
import gradio as gr | |
from PIL import Image | |
import torchvision.transforms as transforms | |
import os | |
# CPU 전용 설정 | |
torch.set_num_threads(4) # CPU 스레드 수 제한 | |
torch.set_grad_enabled(False) # 추론 모드만 사용 | |
norm_layer = nn.InstanceNorm2d | |
class ResidualBlock(nn.Module): | |
def __init__(self, in_features): | |
super(ResidualBlock, self).__init__() | |
conv_block = [ | |
nn.ReflectionPad2d(1), | |
nn.Conv2d(in_features, in_features, 3), | |
norm_layer(in_features), | |
nn.ReLU(inplace=True), | |
nn.ReflectionPad2d(1), | |
nn.Conv2d(in_features, in_features, 3), | |
norm_layer(in_features) | |
] | |
self.conv_block = nn.Sequential(*conv_block) | |
def forward(self, x): | |
return x + self.conv_block(x) | |
class Generator(nn.Module): | |
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True): | |
super(Generator, self).__init__() | |
# Initial convolution block | |
model0 = [ | |
nn.ReflectionPad2d(3), | |
nn.Conv2d(input_nc, 64, 7), | |
norm_layer(64), | |
nn.ReLU(inplace=True) | |
] | |
self.model0 = nn.Sequential(*model0) | |
# Downsampling | |
model1 = [] | |
in_features = 64 | |
out_features = in_features*2 | |
for _ in range(2): | |
model1 += [ | |
nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), | |
norm_layer(out_features), | |
nn.ReLU(inplace=True) | |
] | |
in_features = out_features | |
out_features = in_features*2 | |
self.model1 = nn.Sequential(*model1) | |
# Residual blocks | |
model2 = [] | |
for _ in range(n_residual_blocks): | |
model2 += [ResidualBlock(in_features)] | |
self.model2 = nn.Sequential(*model2) | |
# Upsampling | |
model3 = [] | |
out_features = in_features//2 | |
for _ in range(2): | |
model3 += [ | |
nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), | |
norm_layer(out_features), | |
nn.ReLU(inplace=True) | |
] | |
in_features = out_features | |
out_features = in_features//2 | |
self.model3 = nn.Sequential(*model3) | |
# Output layer | |
model4 = [ | |
nn.ReflectionPad2d(3), | |
nn.Conv2d(64, output_nc, 7) | |
] | |
if sigmoid: | |
model4 += [nn.Sigmoid()] | |
self.model4 = nn.Sequential(*model4) | |
def forward(self, x): | |
out = self.model0(x) | |
out = self.model1(out) | |
out = self.model2(out) | |
out = self.model3(out) | |
out = self.model4(out) | |
return out | |
# CPU 전용 모델 로드 | |
def load_models(): | |
try: | |
print("Initializing models in CPU mode...") | |
model1 = Generator(3, 1, 3) | |
model2 = Generator(3, 1, 3) | |
# Load models in CPU mode | |
model1.load_state_dict(torch.load('model.pth', map_location='cpu')) | |
model2.load_state_dict(torch.load('model2.pth', map_location='cpu')) | |
model1.eval() | |
model2.eval() | |
print("Models loaded successfully") | |
return model1, model2 | |
except Exception as e: | |
print(f"Error loading models: {str(e)}") | |
raise gr.Error("Failed to initialize models. Please check model files.") | |
try: | |
print("Starting model initialization...") | |
model1, model2 = load_models() | |
print("Model initialization completed") | |
except Exception as e: | |
print(f"Critical error: {str(e)}") | |
raise gr.Error("Failed to start the application") | |
def process_image(input_img, version, line_thickness=1.0): | |
try: | |
# 이미지 로드 및 전처리 | |
original_img = Image.open(input_img) | |
original_size = original_img.size | |
transform = transforms.Compose([ | |
transforms.Resize(256, Image.BICUBIC), | |
transforms.ToTensor(), | |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) | |
]) | |
input_tensor = transform(original_img).unsqueeze(0) | |
# 모델 처리 | |
with torch.no_grad(): | |
if version == 'Simple Lines': | |
output = model2(input_tensor) | |
else: | |
output = model1(input_tensor) | |
output = output * line_thickness | |
# 결과 이미지 생성 | |
output_img = transforms.ToPILImage()(output.squeeze().clamp(0, 1)) | |
output_img = output_img.resize(original_size, Image.BICUBIC) | |
return output_img | |
except Exception as e: | |
raise gr.Error(f"이미지 처리 에러: {str(e)}") | |
# Simple UI | |
with gr.Blocks() as iface: | |
gr.Markdown("# ✨ Magic Drawings") | |
gr.Markdown("Transform your photos into magical line art with AI") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="filepath", label="Upload Image") | |
version = gr.Radio( | |
choices=['Complex Lines', 'Simple Lines'], | |
value='Simple Lines', | |
label="Art Style" | |
) | |
line_thickness = gr.Slider( | |
minimum=0.1, | |
maximum=2.0, | |
value=1.0, | |
step=0.1, | |
label="Line Thickness" | |
) | |
with gr.Column(): | |
output_image = gr.Image(type="pil", label="Generated Art") | |
generate_btn = gr.Button("Generate Magic", variant="primary") | |
# Event handlers | |
generate_btn.click( | |
fn=process_image, | |
inputs=[input_image, version, line_thickness], | |
outputs=output_image | |
) | |
# 실행 | |
iface.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=False | |
) |