Magic-Drawings / app.py
fantos's picture
Update app.py
d0dbba0 verified
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import torchvision.transforms as transforms
import os
# CPU 전용 설정
torch.set_num_threads(4) # CPU 스레드 수 제한
torch.set_grad_enabled(False) # 추론 모드만 사용
norm_layer = nn.InstanceNorm2d
class ResidualBlock(nn.Module):
def __init__(self, in_features):
super(ResidualBlock, self).__init__()
conv_block = [
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features),
nn.ReLU(inplace=True),
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features)
]
self.conv_block = nn.Sequential(*conv_block)
def forward(self, x):
return x + self.conv_block(x)
class Generator(nn.Module):
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
super(Generator, self).__init__()
# Initial convolution block
model0 = [
nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, 64, 7),
norm_layer(64),
nn.ReLU(inplace=True)
]
self.model0 = nn.Sequential(*model0)
# Downsampling
model1 = []
in_features = 64
out_features = in_features*2
for _ in range(2):
model1 += [
nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True)
]
in_features = out_features
out_features = in_features*2
self.model1 = nn.Sequential(*model1)
# Residual blocks
model2 = []
for _ in range(n_residual_blocks):
model2 += [ResidualBlock(in_features)]
self.model2 = nn.Sequential(*model2)
# Upsampling
model3 = []
out_features = in_features//2
for _ in range(2):
model3 += [
nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True)
]
in_features = out_features
out_features = in_features//2
self.model3 = nn.Sequential(*model3)
# Output layer
model4 = [
nn.ReflectionPad2d(3),
nn.Conv2d(64, output_nc, 7)
]
if sigmoid:
model4 += [nn.Sigmoid()]
self.model4 = nn.Sequential(*model4)
def forward(self, x):
out = self.model0(x)
out = self.model1(out)
out = self.model2(out)
out = self.model3(out)
out = self.model4(out)
return out
# CPU 전용 모델 로드
def load_models():
try:
print("Initializing models in CPU mode...")
model1 = Generator(3, 1, 3)
model2 = Generator(3, 1, 3)
# Load models in CPU mode
model1.load_state_dict(torch.load('model.pth', map_location='cpu'))
model2.load_state_dict(torch.load('model2.pth', map_location='cpu'))
model1.eval()
model2.eval()
print("Models loaded successfully")
return model1, model2
except Exception as e:
print(f"Error loading models: {str(e)}")
raise gr.Error("Failed to initialize models. Please check model files.")
try:
print("Starting model initialization...")
model1, model2 = load_models()
print("Model initialization completed")
except Exception as e:
print(f"Critical error: {str(e)}")
raise gr.Error("Failed to start the application")
def process_image(input_img, version, line_thickness=1.0):
try:
# 이미지 로드 및 전처리
original_img = Image.open(input_img)
original_size = original_img.size
transform = transforms.Compose([
transforms.Resize(256, Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
input_tensor = transform(original_img).unsqueeze(0)
# 모델 처리
with torch.no_grad():
if version == 'Simple Lines':
output = model2(input_tensor)
else:
output = model1(input_tensor)
output = output * line_thickness
# 결과 이미지 생성
output_img = transforms.ToPILImage()(output.squeeze().clamp(0, 1))
output_img = output_img.resize(original_size, Image.BICUBIC)
return output_img
except Exception as e:
raise gr.Error(f"이미지 처리 에러: {str(e)}")
# Simple UI
with gr.Blocks() as iface:
gr.Markdown("# ✨ Magic Drawings")
gr.Markdown("Transform your photos into magical line art with AI")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="filepath", label="Upload Image")
version = gr.Radio(
choices=['Complex Lines', 'Simple Lines'],
value='Simple Lines',
label="Art Style"
)
line_thickness = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
label="Line Thickness"
)
with gr.Column():
output_image = gr.Image(type="pil", label="Generated Art")
generate_btn = gr.Button("Generate Magic", variant="primary")
# Event handlers
generate_btn.click(
fn=process_image,
inputs=[input_image, version, line_thickness],
outputs=output_image
)
# 실행
iface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)