Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,87 +5,25 @@ import gradio as gr
|
|
5 |
from PIL import Image
|
6 |
import torchvision.transforms as transforms
|
7 |
import os
|
8 |
-
import io
|
9 |
-
import base64
|
10 |
-
import json
|
11 |
-
from datetime import datetime
|
12 |
-
import torch.nn.functional as F
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
torch.
|
17 |
-
|
18 |
-
# Optimize memory usage
|
19 |
-
torch.backends.cudnn.benchmark = False
|
20 |
-
torch.backends.cudnn.deterministic = True
|
21 |
-
|
22 |
-
# Reduce memory usage for history
|
23 |
-
MAX_HISTORY_ENTRIES = 5
|
24 |
-
|
25 |
-
# Style presets
|
26 |
-
STYLE_PRESETS = {
|
27 |
-
"Sketch": {"line_thickness": 1.0, "contrast": 1.2, "brightness": 1.0},
|
28 |
-
"Bold": {"line_thickness": 1.5, "contrast": 1.4, "brightness": 0.8},
|
29 |
-
"Light": {"line_thickness": 0.8, "contrast": 0.9, "brightness": 1.2},
|
30 |
-
"High Contrast": {"line_thickness": 1.2, "contrast": 1.6, "brightness": 0.7},
|
31 |
-
}
|
32 |
-
|
33 |
-
# History management
|
34 |
-
class HistoryManager:
|
35 |
-
def __init__(self, max_entries=10):
|
36 |
-
self.max_entries = max_entries
|
37 |
-
self.history_file = "processing_history.json"
|
38 |
-
self.history = self.load_history()
|
39 |
-
|
40 |
-
def load_history(self):
|
41 |
-
try:
|
42 |
-
if os.path.exists(self.history_file):
|
43 |
-
with open(self.history_file, 'r') as f:
|
44 |
-
return json.load(f)
|
45 |
-
return []
|
46 |
-
except Exception:
|
47 |
-
return []
|
48 |
-
|
49 |
-
def save_history(self):
|
50 |
-
try:
|
51 |
-
with open(self.history_file, 'w') as f:
|
52 |
-
json.dump(self.history[-self.max_entries:], f)
|
53 |
-
except Exception as e:
|
54 |
-
print(f"Error saving history: {e}")
|
55 |
-
|
56 |
-
def add_entry(self, input_path, settings):
|
57 |
-
entry = {
|
58 |
-
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
59 |
-
"input_file": os.path.basename(input_path),
|
60 |
-
"settings": settings
|
61 |
-
}
|
62 |
-
self.history.append(entry)
|
63 |
-
if len(self.history) > self.max_entries:
|
64 |
-
self.history.pop(0)
|
65 |
-
self.save_history()
|
66 |
-
|
67 |
-
def get_latest_settings(self):
|
68 |
-
if self.history:
|
69 |
-
return self.history[-1]["settings"]
|
70 |
-
return None
|
71 |
-
|
72 |
-
# Initialize history manager with reduced entries
|
73 |
-
history_manager = HistoryManager(max_entries=MAX_HISTORY_ENTRIES)
|
74 |
|
75 |
norm_layer = nn.InstanceNorm2d
|
76 |
|
77 |
class ResidualBlock(nn.Module):
|
78 |
def __init__(self, in_features):
|
79 |
super(ResidualBlock, self).__init__()
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
self.conv_block = nn.Sequential(*conv_block)
|
90 |
|
91 |
def forward(self, x):
|
@@ -96,10 +34,12 @@ class Generator(nn.Module):
|
|
96 |
super(Generator, self).__init__()
|
97 |
|
98 |
# Initial convolution block
|
99 |
-
model0 = [
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
103 |
self.model0 = nn.Sequential(*model0)
|
104 |
|
105 |
# Downsampling
|
@@ -107,9 +47,11 @@ class Generator(nn.Module):
|
|
107 |
in_features = 64
|
108 |
out_features = in_features*2
|
109 |
for _ in range(2):
|
110 |
-
model1 += [
|
111 |
-
|
112 |
-
|
|
|
|
|
113 |
in_features = out_features
|
114 |
out_features = in_features*2
|
115 |
self.model1 = nn.Sequential(*model1)
|
@@ -124,19 +66,22 @@ class Generator(nn.Module):
|
|
124 |
model3 = []
|
125 |
out_features = in_features//2
|
126 |
for _ in range(2):
|
127 |
-
model3 += [
|
128 |
-
|
129 |
-
|
|
|
|
|
130 |
in_features = out_features
|
131 |
out_features = in_features//2
|
132 |
self.model3 = nn.Sequential(*model3)
|
133 |
|
134 |
# Output layer
|
135 |
-
model4 = [
|
136 |
-
|
|
|
|
|
137 |
if sigmoid:
|
138 |
model4 += [nn.Sigmoid()]
|
139 |
-
|
140 |
self.model4 = nn.Sequential(*model4)
|
141 |
|
142 |
def forward(self, x):
|
@@ -147,275 +92,102 @@ class Generator(nn.Module):
|
|
147 |
out = self.model4(out)
|
148 |
return out
|
149 |
|
150 |
-
#
|
151 |
def load_models():
|
152 |
try:
|
153 |
print("Initializing models in CPU mode...")
|
154 |
model1 = Generator(3, 1, 3)
|
155 |
model2 = Generator(3, 1, 3)
|
156 |
|
|
|
157 |
model1.load_state_dict(torch.load('model.pth', map_location='cpu'))
|
158 |
model2.load_state_dict(torch.load('model2.pth', map_location='cpu'))
|
159 |
|
160 |
model1.eval()
|
161 |
model2.eval()
|
162 |
-
torch.set_grad_enabled(False)
|
163 |
|
164 |
-
print("Models loaded successfully
|
165 |
return model1, model2
|
166 |
except Exception as e:
|
167 |
-
|
168 |
-
|
169 |
-
raise gr.Error("Failed to initialize models. Please check the model files and system configuration.")
|
170 |
|
171 |
-
# Load models
|
172 |
try:
|
173 |
print("Starting model initialization...")
|
174 |
model1, model2 = load_models()
|
175 |
print("Model initialization completed")
|
176 |
except Exception as e:
|
177 |
-
print(f"Critical error
|
178 |
-
raise gr.Error("Failed to start the application
|
179 |
-
|
180 |
-
def apply_preset(preset_name):
|
181 |
-
"""Apply a style preset and return the settings"""
|
182 |
-
if preset_name in STYLE_PRESETS:
|
183 |
-
return (
|
184 |
-
STYLE_PRESETS[preset_name]["line_thickness"],
|
185 |
-
STYLE_PRESETS[preset_name]["contrast"],
|
186 |
-
STYLE_PRESETS[preset_name]["brightness"],
|
187 |
-
True # Enable enhancement for presets
|
188 |
-
)
|
189 |
-
return (1.0, 1.0, 1.0, False)
|
190 |
|
191 |
-
def
|
192 |
-
"""Enhance line drawing with contrast and brightness adjustments"""
|
193 |
-
enhanced = np.array(img)
|
194 |
-
enhanced = enhanced * contrast
|
195 |
-
enhanced = np.clip(enhanced + brightness, 0, 1)
|
196 |
-
return Image.fromarray((enhanced * 255).astype(np.uint8))
|
197 |
-
|
198 |
-
def predict(input_img, version, preset_name, line_thickness=1.0, contrast=1.0,
|
199 |
-
brightness=1.0, enable_enhancement=False, output_size="Original"):
|
200 |
try:
|
201 |
-
#
|
202 |
-
if preset_name != "Custom":
|
203 |
-
line_thickness, contrast, brightness, enable_enhancement = apply_preset(preset_name)
|
204 |
-
|
205 |
-
# Open and process input image
|
206 |
original_img = Image.open(input_img)
|
207 |
original_size = original_img.size
|
208 |
-
|
209 |
-
# Adjust output size
|
210 |
-
if output_size != "Original":
|
211 |
-
width, height = map(int, output_size.split("x"))
|
212 |
-
target_size = (width, height)
|
213 |
-
else:
|
214 |
-
target_size = original_size
|
215 |
-
|
216 |
-
# Transform pipeline
|
217 |
transform = transforms.Compose([
|
218 |
transforms.Resize(256, Image.BICUBIC),
|
219 |
transforms.ToTensor(),
|
220 |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
221 |
])
|
222 |
|
223 |
-
input_tensor = transform(original_img).unsqueeze(0)
|
224 |
|
225 |
-
#
|
226 |
with torch.no_grad():
|
227 |
if version == 'Simple Lines':
|
228 |
output = model2(input_tensor)
|
229 |
else:
|
230 |
output = model1(input_tensor)
|
231 |
|
232 |
-
# Apply line thickness adjustment
|
233 |
output = output * line_thickness
|
234 |
|
235 |
-
#
|
236 |
-
output_img = transforms.ToPILImage()(output.squeeze().
|
237 |
-
|
238 |
-
# Apply enhancements if enabled
|
239 |
-
if enable_enhancement:
|
240 |
-
output_img = enhance_lines(output_img, contrast, brightness)
|
241 |
-
|
242 |
-
# Resize to target size
|
243 |
-
output_img = output_img.resize(target_size, Image.BICUBIC)
|
244 |
-
|
245 |
-
# Save to history
|
246 |
-
settings = {
|
247 |
-
"version": version,
|
248 |
-
"preset": preset_name,
|
249 |
-
"line_thickness": line_thickness,
|
250 |
-
"contrast": contrast,
|
251 |
-
"brightness": brightness,
|
252 |
-
"enable_enhancement": enable_enhancement,
|
253 |
-
"output_size": output_size
|
254 |
-
}
|
255 |
-
history_manager.add_entry(input_img, settings)
|
256 |
|
257 |
return output_img
|
258 |
|
259 |
except Exception as e:
|
260 |
-
raise gr.Error(f"
|
261 |
-
|
262 |
-
# Custom CSS
|
263 |
-
custom_css = """
|
264 |
-
.gradio-container {
|
265 |
-
font-family: 'Helvetica Neue', Arial, sans-serif;
|
266 |
-
max-width: 1200px !important;
|
267 |
-
margin: auto;
|
268 |
-
}
|
269 |
-
.gr-button {
|
270 |
-
border-radius: 8px;
|
271 |
-
background: linear-gradient(45deg, #3498db, #2980b9);
|
272 |
-
border: none;
|
273 |
-
color: white;
|
274 |
-
transition: all 0.3s ease;
|
275 |
-
}
|
276 |
-
.gr-button:hover {
|
277 |
-
background: linear-gradient(45deg, #2980b9, #3498db);
|
278 |
-
transform: translateY(-2px);
|
279 |
-
box-shadow: 0 4px 12px rgba(0,0,0,0.15);
|
280 |
-
}
|
281 |
-
.gr-button.secondary {
|
282 |
-
background: linear-gradient(45deg, #95a5a6, #7f8c8d);
|
283 |
-
}
|
284 |
-
.gr-input {
|
285 |
-
border-radius: 8px;
|
286 |
-
border: 2px solid #3498db;
|
287 |
-
transition: all 0.3s ease;
|
288 |
-
}
|
289 |
-
.gr-input:focus {
|
290 |
-
border-color: #2980b9;
|
291 |
-
box-shadow: 0 0 0 2px rgba(41,128,185,0.2);
|
292 |
-
}
|
293 |
-
.gr-form {
|
294 |
-
border-radius: 12px;
|
295 |
-
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
|
296 |
-
padding: 20px;
|
297 |
-
}
|
298 |
-
.gr-header {
|
299 |
-
text-align: center;
|
300 |
-
margin-bottom: 2em;
|
301 |
-
}
|
302 |
-
"""
|
303 |
|
304 |
-
#
|
305 |
-
with gr.Blocks(
|
306 |
-
|
307 |
-
|
308 |
-
gr.Markdown("Transform your images into beautiful line drawings with advanced controls")
|
309 |
|
310 |
with gr.Row():
|
311 |
-
with gr.Column(
|
312 |
input_image = gr.Image(type="filepath", label="Upload Image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
-
|
315 |
-
|
316 |
-
choices=['Complex Lines', 'Simple Lines'],
|
317 |
-
value='Simple Lines',
|
318 |
-
label="Drawing Style"
|
319 |
-
)
|
320 |
-
preset_selector = gr.Dropdown(
|
321 |
-
choices=["Custom"] + list(STYLE_PRESETS.keys()),
|
322 |
-
value="Custom",
|
323 |
-
label="Style Preset"
|
324 |
-
)
|
325 |
-
|
326 |
-
with gr.Accordion("Advanced Settings", open=False):
|
327 |
-
output_size = gr.Dropdown(
|
328 |
-
choices=["Original", "512x512", "1024x1024", "2048x2048"],
|
329 |
-
value="Original",
|
330 |
-
label="Output Size"
|
331 |
-
)
|
332 |
-
|
333 |
-
line_thickness = gr.Slider(
|
334 |
-
minimum=0.1,
|
335 |
-
maximum=2.0,
|
336 |
-
value=1.0,
|
337 |
-
step=0.1,
|
338 |
-
label="Line Thickness"
|
339 |
-
)
|
340 |
-
|
341 |
-
enable_enhancement = gr.Checkbox(
|
342 |
-
label="Enable Enhancement",
|
343 |
-
value=False
|
344 |
-
)
|
345 |
-
|
346 |
-
with gr.Group(visible=False) as enhancement_controls:
|
347 |
-
contrast = gr.Slider(
|
348 |
-
minimum=0.5,
|
349 |
-
maximum=2.0,
|
350 |
-
value=1.0,
|
351 |
-
step=0.1,
|
352 |
-
label="Contrast"
|
353 |
-
)
|
354 |
-
brightness = gr.Slider(
|
355 |
-
minimum=0.5,
|
356 |
-
maximum=1.5,
|
357 |
-
value=1.0,
|
358 |
-
step=0.1,
|
359 |
-
label="Brightness"
|
360 |
-
)
|
361 |
-
|
362 |
-
with gr.Column(scale=1):
|
363 |
-
output_image = gr.Image(type="pil", label="Generated Line Drawing")
|
364 |
-
with gr.Row():
|
365 |
-
generate_btn = gr.Button("Generate", variant="primary", size="lg")
|
366 |
-
clear_btn = gr.Button("Clear", variant="secondary", size="lg")
|
367 |
|
368 |
-
|
369 |
-
enable_enhancement.change(
|
370 |
-
fn=lambda x: gr.Group(visible=x),
|
371 |
-
inputs=[enable_enhancement],
|
372 |
-
outputs=[enhancement_controls]
|
373 |
-
)
|
374 |
-
|
375 |
-
preset_selector.change(
|
376 |
-
fn=apply_preset,
|
377 |
-
inputs=[preset_selector],
|
378 |
-
outputs=[line_thickness, contrast, brightness, enable_enhancement]
|
379 |
-
)
|
380 |
|
|
|
381 |
generate_btn.click(
|
382 |
-
fn=
|
383 |
-
inputs=[
|
384 |
-
input_image,
|
385 |
-
version,
|
386 |
-
preset_selector,
|
387 |
-
line_thickness,
|
388 |
-
contrast,
|
389 |
-
brightness,
|
390 |
-
enable_enhancement,
|
391 |
-
output_size
|
392 |
-
],
|
393 |
outputs=output_image
|
394 |
)
|
395 |
-
|
396 |
-
clear_btn.click(
|
397 |
-
fn=lambda: (None, "Simple Lines", "Custom", 1.0, 1.0, 1.0, False, "Original"),
|
398 |
-
inputs=[],
|
399 |
-
outputs=[
|
400 |
-
input_image,
|
401 |
-
version,
|
402 |
-
preset_selector,
|
403 |
-
line_thickness,
|
404 |
-
contrast,
|
405 |
-
brightness,
|
406 |
-
enable_enhancement,
|
407 |
-
output_size
|
408 |
-
]
|
409 |
-
)
|
410 |
|
411 |
-
#
|
412 |
iface.launch(
|
413 |
server_name="0.0.0.0",
|
414 |
server_port=7860,
|
415 |
-
share=False
|
416 |
-
debug=False,
|
417 |
-
show_error=True,
|
418 |
-
max_threads=4,
|
419 |
-
ssr=False, # Disable SSR to prevent Node.js issues
|
420 |
-
cache_examples=False, # Disable example caching to save memory
|
421 |
)
|
|
|
5 |
from PIL import Image
|
6 |
import torchvision.transforms as transforms
|
7 |
import os
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# CPU 전용 설정
|
10 |
+
torch.set_num_threads(4) # CPU 스레드 수 제한
|
11 |
+
torch.set_grad_enabled(False) # 추론 모드만 사용
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
norm_layer = nn.InstanceNorm2d
|
14 |
|
15 |
class ResidualBlock(nn.Module):
|
16 |
def __init__(self, in_features):
|
17 |
super(ResidualBlock, self).__init__()
|
18 |
+
conv_block = [
|
19 |
+
nn.ReflectionPad2d(1),
|
20 |
+
nn.Conv2d(in_features, in_features, 3),
|
21 |
+
norm_layer(in_features),
|
22 |
+
nn.ReLU(inplace=True),
|
23 |
+
nn.ReflectionPad2d(1),
|
24 |
+
nn.Conv2d(in_features, in_features, 3),
|
25 |
+
norm_layer(in_features)
|
26 |
+
]
|
27 |
self.conv_block = nn.Sequential(*conv_block)
|
28 |
|
29 |
def forward(self, x):
|
|
|
34 |
super(Generator, self).__init__()
|
35 |
|
36 |
# Initial convolution block
|
37 |
+
model0 = [
|
38 |
+
nn.ReflectionPad2d(3),
|
39 |
+
nn.Conv2d(input_nc, 64, 7),
|
40 |
+
norm_layer(64),
|
41 |
+
nn.ReLU(inplace=True)
|
42 |
+
]
|
43 |
self.model0 = nn.Sequential(*model0)
|
44 |
|
45 |
# Downsampling
|
|
|
47 |
in_features = 64
|
48 |
out_features = in_features*2
|
49 |
for _ in range(2):
|
50 |
+
model1 += [
|
51 |
+
nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
|
52 |
+
norm_layer(out_features),
|
53 |
+
nn.ReLU(inplace=True)
|
54 |
+
]
|
55 |
in_features = out_features
|
56 |
out_features = in_features*2
|
57 |
self.model1 = nn.Sequential(*model1)
|
|
|
66 |
model3 = []
|
67 |
out_features = in_features//2
|
68 |
for _ in range(2):
|
69 |
+
model3 += [
|
70 |
+
nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
|
71 |
+
norm_layer(out_features),
|
72 |
+
nn.ReLU(inplace=True)
|
73 |
+
]
|
74 |
in_features = out_features
|
75 |
out_features = in_features//2
|
76 |
self.model3 = nn.Sequential(*model3)
|
77 |
|
78 |
# Output layer
|
79 |
+
model4 = [
|
80 |
+
nn.ReflectionPad2d(3),
|
81 |
+
nn.Conv2d(64, output_nc, 7)
|
82 |
+
]
|
83 |
if sigmoid:
|
84 |
model4 += [nn.Sigmoid()]
|
|
|
85 |
self.model4 = nn.Sequential(*model4)
|
86 |
|
87 |
def forward(self, x):
|
|
|
92 |
out = self.model4(out)
|
93 |
return out
|
94 |
|
95 |
+
# CPU 전용 모델 로드
|
96 |
def load_models():
|
97 |
try:
|
98 |
print("Initializing models in CPU mode...")
|
99 |
model1 = Generator(3, 1, 3)
|
100 |
model2 = Generator(3, 1, 3)
|
101 |
|
102 |
+
# Load models in CPU mode
|
103 |
model1.load_state_dict(torch.load('model.pth', map_location='cpu'))
|
104 |
model2.load_state_dict(torch.load('model2.pth', map_location='cpu'))
|
105 |
|
106 |
model1.eval()
|
107 |
model2.eval()
|
|
|
108 |
|
109 |
+
print("Models loaded successfully")
|
110 |
return model1, model2
|
111 |
except Exception as e:
|
112 |
+
print(f"Error loading models: {str(e)}")
|
113 |
+
raise gr.Error("Failed to initialize models. Please check model files.")
|
|
|
114 |
|
|
|
115 |
try:
|
116 |
print("Starting model initialization...")
|
117 |
model1, model2 = load_models()
|
118 |
print("Model initialization completed")
|
119 |
except Exception as e:
|
120 |
+
print(f"Critical error: {str(e)}")
|
121 |
+
raise gr.Error("Failed to start the application")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
def process_image(input_img, version, line_thickness=1.0):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
try:
|
125 |
+
# 이미지 로드 및 전처리
|
|
|
|
|
|
|
|
|
126 |
original_img = Image.open(input_img)
|
127 |
original_size = original_img.size
|
128 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
transform = transforms.Compose([
|
130 |
transforms.Resize(256, Image.BICUBIC),
|
131 |
transforms.ToTensor(),
|
132 |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
133 |
])
|
134 |
|
135 |
+
input_tensor = transform(original_img).unsqueeze(0)
|
136 |
|
137 |
+
# 모델 처리
|
138 |
with torch.no_grad():
|
139 |
if version == 'Simple Lines':
|
140 |
output = model2(input_tensor)
|
141 |
else:
|
142 |
output = model1(input_tensor)
|
143 |
|
|
|
144 |
output = output * line_thickness
|
145 |
|
146 |
+
# 결과 이미지 생성
|
147 |
+
output_img = transforms.ToPILImage()(output.squeeze().clamp(0, 1))
|
148 |
+
output_img = output_img.resize(original_size, Image.BICUBIC)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
return output_img
|
151 |
|
152 |
except Exception as e:
|
153 |
+
raise gr.Error(f"이미지 처리 에러: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
+
# Simple UI
|
156 |
+
with gr.Blocks() as iface:
|
157 |
+
gr.Markdown("# ✨ Magic Drawings")
|
158 |
+
gr.Markdown("Transform your photos into magical line art with AI")
|
|
|
159 |
|
160 |
with gr.Row():
|
161 |
+
with gr.Column():
|
162 |
input_image = gr.Image(type="filepath", label="Upload Image")
|
163 |
+
version = gr.Radio(
|
164 |
+
choices=['Complex Lines', 'Simple Lines'],
|
165 |
+
value='Simple Lines',
|
166 |
+
label="Art Style"
|
167 |
+
)
|
168 |
+
line_thickness = gr.Slider(
|
169 |
+
minimum=0.1,
|
170 |
+
maximum=2.0,
|
171 |
+
value=1.0,
|
172 |
+
step=0.1,
|
173 |
+
label="Line Thickness"
|
174 |
+
)
|
175 |
|
176 |
+
with gr.Column():
|
177 |
+
output_image = gr.Image(type="pil", label="Generated Art")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
+
generate_btn = gr.Button("Generate Magic", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
+
# Event handlers
|
182 |
generate_btn.click(
|
183 |
+
fn=process_image,
|
184 |
+
inputs=[input_image, version, line_thickness],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
outputs=output_image
|
186 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
+
# 실행
|
189 |
iface.launch(
|
190 |
server_name="0.0.0.0",
|
191 |
server_port=7860,
|
192 |
+
share=False
|
|
|
|
|
|
|
|
|
|
|
193 |
)
|