Magic-Drawings / app.py
fantos's picture
Update app.py
2cdbfb7 verified
raw
history blame
9.2 kB
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import torchvision.transforms as transforms
import os
from huggingface_hub import hf_hub_download
import torch.nn.functional as F
# Check for CUDA availability but fallback to CPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
norm_layer = nn.InstanceNorm2d
class ResidualBlock(nn.Module):
def __init__(self, in_features):
super(ResidualBlock, self).__init__()
conv_block = [ nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features),
nn.ReLU(inplace=True),
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features) ]
self.conv_block = nn.Sequential(*conv_block)
def forward(self, x):
return x + self.conv_block(x)
class Generator(nn.Module):
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
super(Generator, self).__init__()
# Initial convolution block
model0 = [ nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, 64, 7),
norm_layer(64),
nn.ReLU(inplace=True) ]
self.model0 = nn.Sequential(*model0)
# Downsampling
model1 = []
in_features = 64
out_features = in_features*2
for _ in range(2):
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True) ]
in_features = out_features
out_features = in_features*2
self.model1 = nn.Sequential(*model1)
# Residual blocks
model2 = []
for _ in range(n_residual_blocks):
model2 += [ResidualBlock(in_features)]
self.model2 = nn.Sequential(*model2)
# Upsampling
model3 = []
out_features = in_features//2
for _ in range(2):
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True) ]
in_features = out_features
out_features = in_features//2
self.model3 = nn.Sequential(*model3)
# Output layer
model4 = [ nn.ReflectionPad2d(3),
nn.Conv2d(64, output_nc, 7)]
if sigmoid:
model4 += [nn.Sigmoid()]
self.model4 = nn.Sequential(*model4)
def forward(self, x):
out = self.model0(x)
out = self.model1(out)
out = self.model2(out)
out = self.model3(out)
out = self.model4(out)
return out
# Initialize models
def load_models():
model1 = Generator(3, 1, 3).to(device)
model2 = Generator(3, 1, 3).to(device)
# Download models from HuggingFace Hub
model1_path = hf_hub_download(repo_id="your-hf-repo/line-drawing", filename="model.pth")
model2_path = hf_hub_download(repo_id="your-hf-repo/line-drawing", filename="model2.pth")
model1.load_state_dict(torch.load(model1_path, map_location=device))
model2.load_state_dict(torch.load(model2_path, map_location=device))
model1.eval()
model2.eval()
return model1, model2
model1, model2 = load_models()
def apply_style_transfer(img, strength=1.0):
"""Apply artistic style transfer effect"""
img_array = np.array(img)
processed = F.interpolate(
torch.from_numpy(img_array).float().unsqueeze(0),
size=(256, 256),
mode='bilinear',
align_corners=False
)
return processed * strength
def enhance_lines(img, contrast=1.0, brightness=1.0):
"""Enhance line drawing with contrast and brightness adjustments"""
enhanced = np.array(img)
enhanced = enhanced * contrast
enhanced = np.clip(enhanced + brightness, 0, 1)
return Image.fromarray((enhanced * 255).astype(np.uint8))
def predict(input_img, version, line_thickness=1.0, contrast=1.0, brightness=1.0, enable_enhancement=False):
try:
# Open and process input image
original_img = Image.open(input_img)
original_size = original_img.size
# Transform pipeline
transform = transforms.Compose([
transforms.Resize(256, Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
input_tensor = transform(original_img).unsqueeze(0).to(device)
# Process through selected model
with torch.no_grad():
if version == 'Simple Lines':
output = model2(input_tensor)
else:
output = model1(input_tensor)
# Apply line thickness adjustment
output = output * line_thickness
# Convert to image
output_img = transforms.ToPILImage()(output.squeeze().cpu().clamp(0, 1))
# Apply enhancements if enabled
if enable_enhancement:
output_img = enhance_lines(output_img, contrast, brightness)
# Resize to original
output_img = output_img.resize(original_size, Image.BICUBIC)
return output_img
except Exception as e:
raise gr.Error(f"Error processing image: {str(e)}")
# Custom CSS for better UI
custom_css = """
.gradio-container {
font-family: 'Helvetica Neue', Arial, sans-serif;
}
.gr-button {
border-radius: 8px;
background: linear-gradient(45deg, #3498db, #2980b9);
border: none;
color: white;
}
.gr-button:hover {
background: linear-gradient(45deg, #2980b9, #3498db);
transform: translateY(-2px);
transition: all 0.3s ease;
}
.gr-input {
border-radius: 8px;
border: 2px solid #3498db;
}
"""
# Create Gradio interface with enhanced UI
with gr.Blocks(css=custom_css) as iface:
gr.Markdown("# 🎨 Advanced Line Drawing Generator")
gr.Markdown("Transform your images into beautiful line drawings with advanced controls")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="filepath", label="Upload Image")
version = gr.Radio(
choices=['Complex Lines', 'Simple Lines'],
value='Simple Lines',
label="Drawing Style"
)
with gr.Accordion("Advanced Settings", open=False):
line_thickness = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
label="Line Thickness"
)
enable_enhancement = gr.Checkbox(
label="Enable Enhancement",
value=False
)
with gr.Group(visible=False) as enhancement_controls:
contrast = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Contrast"
)
brightness = gr.Slider(
minimum=0.5,
maximum=1.5,
value=1.0,
step=0.1,
label="Brightness"
)
enable_enhancement.change(
fn=lambda x: gr.Group(visible=x),
inputs=[enable_enhancement],
outputs=[enhancement_controls]
)
with gr.Column():
output_image = gr.Image(type="pil", label="Generated Line Drawing")
with gr.Row():
generate_btn = gr.Button("Generate Drawing", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
# Load example images
example_images = []
for file in os.listdir('.'):
if file.lower().endswith(('.png', '.jpg', '.jpeg')):
example_images.append(file)
if example_images:
gr.Examples(
examples=[[img, "Simple Lines"] for img in example_images],
inputs=[input_image, version],
outputs=output_image,
fn=predict,
cache_examples=True
)
# Set up event handlers
generate_btn.click(
fn=predict,
inputs=[
input_image,
version,
line_thickness,
contrast,
brightness,
enable_enhancement
],
outputs=output_image
)
clear_btn.click(
fn=lambda: (None, "Simple Lines", 1.0, 1.0, 1.0, False),
inputs=[],
outputs=[
input_image,
version,
line_thickness,
contrast,
brightness,
enable_enhancement
]
)
# Launch the interface
iface.launch()