Spaces:
Running
Running
File size: 9,195 Bytes
3b6ad82 2cdbfb7 3b6ad82 2cdbfb7 3b6ad82 2cdbfb7 3b6ad82 2cdbfb7 3b6ad82 2cdbfb7 3b6ad82 2cdbfb7 3b6ad82 2cdbfb7 3b6ad82 2cdbfb7 3b6ad82 2cdbfb7 3b6ad82 2cdbfb7 3b6ad82 2cdbfb7 3b6ad82 2cdbfb7 3b6ad82 2cdbfb7 3b6ad82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import torchvision.transforms as transforms
import os
from huggingface_hub import hf_hub_download
import torch.nn.functional as F
# Check for CUDA availability but fallback to CPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
norm_layer = nn.InstanceNorm2d
class ResidualBlock(nn.Module):
def __init__(self, in_features):
super(ResidualBlock, self).__init__()
conv_block = [ nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features),
nn.ReLU(inplace=True),
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features) ]
self.conv_block = nn.Sequential(*conv_block)
def forward(self, x):
return x + self.conv_block(x)
class Generator(nn.Module):
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
super(Generator, self).__init__()
# Initial convolution block
model0 = [ nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, 64, 7),
norm_layer(64),
nn.ReLU(inplace=True) ]
self.model0 = nn.Sequential(*model0)
# Downsampling
model1 = []
in_features = 64
out_features = in_features*2
for _ in range(2):
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True) ]
in_features = out_features
out_features = in_features*2
self.model1 = nn.Sequential(*model1)
# Residual blocks
model2 = []
for _ in range(n_residual_blocks):
model2 += [ResidualBlock(in_features)]
self.model2 = nn.Sequential(*model2)
# Upsampling
model3 = []
out_features = in_features//2
for _ in range(2):
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True) ]
in_features = out_features
out_features = in_features//2
self.model3 = nn.Sequential(*model3)
# Output layer
model4 = [ nn.ReflectionPad2d(3),
nn.Conv2d(64, output_nc, 7)]
if sigmoid:
model4 += [nn.Sigmoid()]
self.model4 = nn.Sequential(*model4)
def forward(self, x):
out = self.model0(x)
out = self.model1(out)
out = self.model2(out)
out = self.model3(out)
out = self.model4(out)
return out
# Initialize models
def load_models():
model1 = Generator(3, 1, 3).to(device)
model2 = Generator(3, 1, 3).to(device)
# Download models from HuggingFace Hub
model1_path = hf_hub_download(repo_id="your-hf-repo/line-drawing", filename="model.pth")
model2_path = hf_hub_download(repo_id="your-hf-repo/line-drawing", filename="model2.pth")
model1.load_state_dict(torch.load(model1_path, map_location=device))
model2.load_state_dict(torch.load(model2_path, map_location=device))
model1.eval()
model2.eval()
return model1, model2
model1, model2 = load_models()
def apply_style_transfer(img, strength=1.0):
"""Apply artistic style transfer effect"""
img_array = np.array(img)
processed = F.interpolate(
torch.from_numpy(img_array).float().unsqueeze(0),
size=(256, 256),
mode='bilinear',
align_corners=False
)
return processed * strength
def enhance_lines(img, contrast=1.0, brightness=1.0):
"""Enhance line drawing with contrast and brightness adjustments"""
enhanced = np.array(img)
enhanced = enhanced * contrast
enhanced = np.clip(enhanced + brightness, 0, 1)
return Image.fromarray((enhanced * 255).astype(np.uint8))
def predict(input_img, version, line_thickness=1.0, contrast=1.0, brightness=1.0, enable_enhancement=False):
try:
# Open and process input image
original_img = Image.open(input_img)
original_size = original_img.size
# Transform pipeline
transform = transforms.Compose([
transforms.Resize(256, Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
input_tensor = transform(original_img).unsqueeze(0).to(device)
# Process through selected model
with torch.no_grad():
if version == 'Simple Lines':
output = model2(input_tensor)
else:
output = model1(input_tensor)
# Apply line thickness adjustment
output = output * line_thickness
# Convert to image
output_img = transforms.ToPILImage()(output.squeeze().cpu().clamp(0, 1))
# Apply enhancements if enabled
if enable_enhancement:
output_img = enhance_lines(output_img, contrast, brightness)
# Resize to original
output_img = output_img.resize(original_size, Image.BICUBIC)
return output_img
except Exception as e:
raise gr.Error(f"Error processing image: {str(e)}")
# Custom CSS for better UI
custom_css = """
.gradio-container {
font-family: 'Helvetica Neue', Arial, sans-serif;
}
.gr-button {
border-radius: 8px;
background: linear-gradient(45deg, #3498db, #2980b9);
border: none;
color: white;
}
.gr-button:hover {
background: linear-gradient(45deg, #2980b9, #3498db);
transform: translateY(-2px);
transition: all 0.3s ease;
}
.gr-input {
border-radius: 8px;
border: 2px solid #3498db;
}
"""
# Create Gradio interface with enhanced UI
with gr.Blocks(css=custom_css) as iface:
gr.Markdown("# 🎨 Advanced Line Drawing Generator")
gr.Markdown("Transform your images into beautiful line drawings with advanced controls")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="filepath", label="Upload Image")
version = gr.Radio(
choices=['Complex Lines', 'Simple Lines'],
value='Simple Lines',
label="Drawing Style"
)
with gr.Accordion("Advanced Settings", open=False):
line_thickness = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
label="Line Thickness"
)
enable_enhancement = gr.Checkbox(
label="Enable Enhancement",
value=False
)
with gr.Group(visible=False) as enhancement_controls:
contrast = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Contrast"
)
brightness = gr.Slider(
minimum=0.5,
maximum=1.5,
value=1.0,
step=0.1,
label="Brightness"
)
enable_enhancement.change(
fn=lambda x: gr.Group(visible=x),
inputs=[enable_enhancement],
outputs=[enhancement_controls]
)
with gr.Column():
output_image = gr.Image(type="pil", label="Generated Line Drawing")
with gr.Row():
generate_btn = gr.Button("Generate Drawing", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
# Load example images
example_images = []
for file in os.listdir('.'):
if file.lower().endswith(('.png', '.jpg', '.jpeg')):
example_images.append(file)
if example_images:
gr.Examples(
examples=[[img, "Simple Lines"] for img in example_images],
inputs=[input_image, version],
outputs=output_image,
fn=predict,
cache_examples=True
)
# Set up event handlers
generate_btn.click(
fn=predict,
inputs=[
input_image,
version,
line_thickness,
contrast,
brightness,
enable_enhancement
],
outputs=output_image
)
clear_btn.click(
fn=lambda: (None, "Simple Lines", 1.0, 1.0, 1.0, False),
inputs=[],
outputs=[
input_image,
version,
line_thickness,
contrast,
brightness,
enable_enhancement
]
)
# Launch the interface
iface.launch() |