File size: 9,195 Bytes
3b6ad82
 
 
 
 
 
2cdbfb7
 
 
 
 
 
3b6ad82
 
 
 
 
 
2cdbfb7
3b6ad82
 
 
 
 
 
2cdbfb7
 
3b6ad82
 
 
 
 
 
 
 
2cdbfb7
 
3b6ad82
 
 
 
 
 
2cdbfb7
3b6ad82
 
 
 
 
 
 
 
 
 
 
2cdbfb7
3b6ad82
 
 
 
 
2cdbfb7
3b6ad82
 
 
 
 
 
 
 
 
 
2cdbfb7
3b6ad82
2cdbfb7
3b6ad82
 
2cdbfb7
3b6ad82
 
2cdbfb7
3b6ad82
 
 
 
 
 
 
2cdbfb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b6ad82
2cdbfb7
3b6ad82
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import torchvision.transforms as transforms
import os
from huggingface_hub import hf_hub_download
import torch.nn.functional as F

# Check for CUDA availability but fallback to CPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

norm_layer = nn.InstanceNorm2d

class ResidualBlock(nn.Module):
    def __init__(self, in_features):
        super(ResidualBlock, self).__init__()
        
        conv_block = [  nn.ReflectionPad2d(1),
                        nn.Conv2d(in_features, in_features, 3),
                        norm_layer(in_features),
                        nn.ReLU(inplace=True),
                        nn.ReflectionPad2d(1),
                        nn.Conv2d(in_features, in_features, 3),
                        norm_layer(in_features)  ]
        
        self.conv_block = nn.Sequential(*conv_block)

    def forward(self, x):
        return x + self.conv_block(x)

class Generator(nn.Module):
    def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
        super(Generator, self).__init__()
        
        # Initial convolution block
        model0 = [   nn.ReflectionPad2d(3),
                    nn.Conv2d(input_nc, 64, 7),
                    norm_layer(64),
                    nn.ReLU(inplace=True) ]
        self.model0 = nn.Sequential(*model0)

        # Downsampling
        model1 = []
        in_features = 64
        out_features = in_features*2
        for _ in range(2):
            model1 += [  nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
                        norm_layer(out_features),
                        nn.ReLU(inplace=True) ]
            in_features = out_features
            out_features = in_features*2
        self.model1 = nn.Sequential(*model1)

        # Residual blocks
        model2 = []
        for _ in range(n_residual_blocks):
            model2 += [ResidualBlock(in_features)]
        self.model2 = nn.Sequential(*model2)

        # Upsampling
        model3 = []
        out_features = in_features//2
        for _ in range(2):
            model3 += [  nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
                        norm_layer(out_features),
                        nn.ReLU(inplace=True) ]
            in_features = out_features
            out_features = in_features//2
        self.model3 = nn.Sequential(*model3)

        # Output layer
        model4 = [  nn.ReflectionPad2d(3),
                    nn.Conv2d(64, output_nc, 7)]
        if sigmoid:
            model4 += [nn.Sigmoid()]
            
        self.model4 = nn.Sequential(*model4)

    def forward(self, x):
        out = self.model0(x)
        out = self.model1(out)
        out = self.model2(out)
        out = self.model3(out)
        out = self.model4(out)
        return out

# Initialize models
def load_models():
    model1 = Generator(3, 1, 3).to(device)
    model2 = Generator(3, 1, 3).to(device)
    
    # Download models from HuggingFace Hub
    model1_path = hf_hub_download(repo_id="your-hf-repo/line-drawing", filename="model.pth")
    model2_path = hf_hub_download(repo_id="your-hf-repo/line-drawing", filename="model2.pth")
    
    model1.load_state_dict(torch.load(model1_path, map_location=device))
    model2.load_state_dict(torch.load(model2_path, map_location=device))
    
    model1.eval()
    model2.eval()
    return model1, model2

model1, model2 = load_models()

def apply_style_transfer(img, strength=1.0):
    """Apply artistic style transfer effect"""
    img_array = np.array(img)
    processed = F.interpolate(
        torch.from_numpy(img_array).float().unsqueeze(0),
        size=(256, 256),
        mode='bilinear',
        align_corners=False
    )
    return processed * strength

def enhance_lines(img, contrast=1.0, brightness=1.0):
    """Enhance line drawing with contrast and brightness adjustments"""
    enhanced = np.array(img)
    enhanced = enhanced * contrast
    enhanced = np.clip(enhanced + brightness, 0, 1)
    return Image.fromarray((enhanced * 255).astype(np.uint8))

def predict(input_img, version, line_thickness=1.0, contrast=1.0, brightness=1.0, enable_enhancement=False):
    try:
        # Open and process input image
        original_img = Image.open(input_img)
        original_size = original_img.size
        
        # Transform pipeline
        transform = transforms.Compose([
            transforms.Resize(256, Image.BICUBIC),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
        
        input_tensor = transform(original_img).unsqueeze(0).to(device)
        
        # Process through selected model
        with torch.no_grad():
            if version == 'Simple Lines':
                output = model2(input_tensor)
            else:
                output = model1(input_tensor)
            
            # Apply line thickness adjustment
            output = output * line_thickness
        
        # Convert to image
        output_img = transforms.ToPILImage()(output.squeeze().cpu().clamp(0, 1))
        
        # Apply enhancements if enabled
        if enable_enhancement:
            output_img = enhance_lines(output_img, contrast, brightness)
        
        # Resize to original
        output_img = output_img.resize(original_size, Image.BICUBIC)
        
        return output_img
        
    except Exception as e:
        raise gr.Error(f"Error processing image: {str(e)}")

# Custom CSS for better UI
custom_css = """
.gradio-container {
    font-family: 'Helvetica Neue', Arial, sans-serif;
}
.gr-button {
    border-radius: 8px;
    background: linear-gradient(45deg, #3498db, #2980b9);
    border: none;
    color: white;
}
.gr-button:hover {
    background: linear-gradient(45deg, #2980b9, #3498db);
    transform: translateY(-2px);
    transition: all 0.3s ease;
}
.gr-input {
    border-radius: 8px;
    border: 2px solid #3498db;
}
"""

# Create Gradio interface with enhanced UI
with gr.Blocks(css=custom_css) as iface:
    gr.Markdown("# 🎨 Advanced Line Drawing Generator")
    gr.Markdown("Transform your images into beautiful line drawings with advanced controls")
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="filepath", label="Upload Image")
            version = gr.Radio(
                choices=['Complex Lines', 'Simple Lines'],
                value='Simple Lines',
                label="Drawing Style"
            )
            
            with gr.Accordion("Advanced Settings", open=False):
                line_thickness = gr.Slider(
                    minimum=0.1,
                    maximum=2.0,
                    value=1.0,
                    step=0.1,
                    label="Line Thickness"
                )
                enable_enhancement = gr.Checkbox(
                    label="Enable Enhancement",
                    value=False
                )
                with gr.Group(visible=False) as enhancement_controls:
                    contrast = gr.Slider(
                        minimum=0.5,
                        maximum=2.0,
                        value=1.0,
                        step=0.1,
                        label="Contrast"
                    )
                    brightness = gr.Slider(
                        minimum=0.5,
                        maximum=1.5,
                        value=1.0,
                        step=0.1,
                        label="Brightness"
                    )
                
                enable_enhancement.change(
                    fn=lambda x: gr.Group(visible=x),
                    inputs=[enable_enhancement],
                    outputs=[enhancement_controls]
                )
            
        with gr.Column():
            output_image = gr.Image(type="pil", label="Generated Line Drawing")
    
    with gr.Row():
        generate_btn = gr.Button("Generate Drawing", variant="primary")
        clear_btn = gr.Button("Clear", variant="secondary")
    
    # Load example images
    example_images = []
    for file in os.listdir('.'):
        if file.lower().endswith(('.png', '.jpg', '.jpeg')):
            example_images.append(file)
    
    if example_images:
        gr.Examples(
            examples=[[img, "Simple Lines"] for img in example_images],
            inputs=[input_image, version],
            outputs=output_image,
            fn=predict,
            cache_examples=True
        )
    
    # Set up event handlers
    generate_btn.click(
        fn=predict,
        inputs=[
            input_image,
            version,
            line_thickness,
            contrast,
            brightness,
            enable_enhancement
        ],
        outputs=output_image
    )
    
    clear_btn.click(
        fn=lambda: (None, "Simple Lines", 1.0, 1.0, 1.0, False),
        inputs=[],
        outputs=[
            input_image,
            version,
            line_thickness,
            contrast,
            brightness,
            enable_enhancement
        ]
    )

# Launch the interface
iface.launch()