fastvideogen / app.py
fantaxy's picture
Update app.py
fafc380 verified
raw
history blame
32 kB
import spaces
import argparse
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download, snapshot_download
import gradio as gr
from gradio_toggle import Toggle
import torch
from diffusers import FluxPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
from PIL import Image
from transformers import pipeline, CLIPProcessor, CLIPModel, T5EncoderModel, T5Tokenizer
import replicate
import logging
import requests
from pathlib import Path
import cv2
import numpy as np
import sys
import io
import json
import gc
import csv
from openai import OpenAI
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
from xora.schedulers.rf import RectifiedFlowScheduler
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline
from xora.utils.conditioning_method import ConditioningMethod
from functools import lru_cache
from diffusers.pipelines.flux import FluxPipeline
# ๋กœ๊น… ์„ค์ •
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# ์ƒ์ˆ˜ ๋ฐ ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ์„ค์ •
MAX_SEED = np.iinfo(np.int32).max
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
MODEL_PATH = "asset"
CACHE_PATH = path.join(path.dirname(path.abspath(__file__)), "models")
GALLERY_PATH = path.join(PERSISTENT_DIR, "gallery")
VIDEO_GALLERY_PATH = path.join(PERSISTENT_DIR, "video_gallery")
# API ํ‚ค ์„ค์ •
HF_TOKEN = os.getenv("HF_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
CATBOX_USER_HASH = "e7a96fc68dd4c7d2954040cd5"
REPLICATE_API_TOKEN = os.getenv("API_KEY")
# ์‹œ์Šคํ…œ ํ”„๋กฌํ”„ํŠธ ๋กœ๋“œ
SYSTEM_PROMPT_PATH = "assets/system_prompt_t2v.txt"
with open(SYSTEM_PROMPT_PATH, "r") as f:
SYSTEM_PROMPT = f.read()
# ๋””๋ ‰ํ† ๋ฆฌ ์ดˆ๊ธฐํ™”
def init_directories():
"""ํ•„์š”ํ•œ ๋””๋ ‰ํ† ๋ฆฌ๋“ค์„ ์ƒ์„ฑ"""
directories = [GALLERY_PATH, VIDEO_GALLERY_PATH, CACHE_PATH]
for directory in directories:
os.makedirs(directory, exist_ok=True)
logger.info(f"Directory initialized: {directory}")
# CUDA ์„ค์ •
def setup_cuda():
"""CUDA ๊ด€๋ จ ์„ค์ • ์ดˆ๊ธฐํ™”"""
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cuda.preferred_blas_library = "cublas"
torch.set_float32_matmul_precision("highest")
logger.info("CUDA settings initialized")
# Model initialization
if not path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
try:
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
cache_dir=cache_path
)
lora_path = hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
cache_dir=cache_path
)
pipe.load_lora_weights(lora_path)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device="cuda", dtype=torch.bfloat16)
pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker",
cache_dir=cache_path
)
except Exception as e:
logger.error(f"Error initializing FluxPipeline: {str(e)}")
raise
# ๋ชจ๋ธ ๊ด€๋ฆฌ ํด๋ž˜์Šค
class ModelManager:
def __init__(self):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.models = {}
self.current_model = None
logger.info(f"ModelManager initialized with device: {self.device}")
def load_model(self, model_name):
"""๋ชจ๋ธ์„ ๋™์ ์œผ๋กœ ๋กœ๋“œ"""
if self.current_model == model_name and model_name in self.models:
return self.models[model_name]
# ํ˜„์žฌ ๋กœ๋“œ๋œ ๋ชจ๋ธ ์–ธ๋กœ๋“œ
self.unload_current_model()
logger.info(f"Loading model: {model_name}")
try:
if model_name == "flux":
model = self._load_flux_model()
elif model_name == "xora":
model = self._load_xora_model()
elif model_name == "clip":
model = self._load_clip_model()
else:
raise ValueError(f"Unknown model: {model_name}")
self.models[model_name] = model
self.current_model = model_name
return model
except Exception as e:
logger.error(f"Error loading model {model_name}: {str(e)}")
raise
def unload_current_model(self):
"""ํ˜„์žฌ ๋กœ๋“œ๋œ ๋ชจ๋ธ ์–ธ๋กœ๋“œ"""
if self.current_model:
logger.info(f"Unloading model: {self.current_model}")
if self.current_model in self.models:
del self.models[self.current_model]
self.current_model = None
torch.cuda.empty_cache()
gc.collect()
def _load_flux_model(self):
"""Flux ๋ชจ๋ธ ๋กœ๋“œ"""
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16
)
pipe.load_lora_weights(
hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors"
)
)
pipe.fuse_lora(lora_scale=0.125)
pipe.to(device=self.device, dtype=torch.bfloat16)
pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker"
)
return pipe
def _load_xora_model(self):
"""Xora ๋ชจ๋ธ ๋กœ๋“œ"""
if not path.exists(MODEL_PATH):
snapshot_download(
"Lightricks/LTX-Video",
revision='c7c8ad4c2ddba847b94e8bfaefbd30bd8669fafc',
local_dir=MODEL_PATH,
repo_type="model",
token=HF_TOKEN
)
vae = load_vae(Path(MODEL_PATH) / "vae")
unet = load_unet(Path(MODEL_PATH) / "unet")
scheduler = load_scheduler(Path(MODEL_PATH) / "scheduler")
patchifier = SymmetricPatchifier(patch_size=1)
text_encoder = T5EncoderModel.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS",
subfolder="text_encoder"
).to(self.device)
tokenizer = T5Tokenizer.from_pretrained(
"PixArt-alpha/PixArt-XL-2-1024-MS",
subfolder="tokenizer"
)
return XoraVideoPipeline(
transformer=unet,
patchifier=patchifier,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
vae=vae
).to(self.device)
def _load_clip_model(self):
"""CLIP ๋ชจ๋ธ ๋กœ๋“œ"""
model = CLIPModel.from_pretrained(
"openai/clip-vit-base-patch32",
cache_dir=MODEL_PATH
).to(self.device)
processor = CLIPProcessor.from_pretrained(
"openai/clip-vit-base-patch32",
cache_dir=MODEL_PATH
)
return {"model": model, "processor": processor}
# ๋ฒˆ์—ญ๊ธฐ ์ดˆ๊ธฐํ™”
@lru_cache(maxsize=None)
def get_translator():
"""๋ฒˆ์—ญ๊ธฐ๋ฅผ lazy loading์œผ๋กœ ์ดˆ๊ธฐํ™”"""
return pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
# OpenAI ํด๋ผ์ด์–ธํŠธ ์ดˆ๊ธฐํ™”
@lru_cache(maxsize=None)
def get_openai_client():
"""OpenAI ํด๋ผ์ด์–ธํŠธ๋ฅผ lazy loading์œผ๋กœ ์ดˆ๊ธฐํ™”"""
return OpenAI(api_key=OPENAI_API_KEY)
# ์œ ํ‹ธ๋ฆฌํ‹ฐ ํ•จ์ˆ˜๋“ค
class Timer:
"""์ž‘์—… ์‹œ๊ฐ„ ์ธก์ •์„ ์œ„ํ•œ ์ปจํ…์ŠคํŠธ ๋งค๋‹ˆ์ €"""
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
logger.info(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
logger.info(f"{self.method} took {str(round(end - self.start, 2))}s")
def process_prompt(prompt):
"""ํ”„๋กฌํ”„ํŠธ ์ „์ฒ˜๋ฆฌ (ํ•œ๊ธ€ ๋ฒˆ์—ญ ๋ฐ ํ•„ํ„ฐ๋ง)"""
if any(ord('๊ฐ€') <= ord(char) <= ord('ํžฃ') for char in prompt):
translator = get_translator()
translated = translator(prompt)[0]['translation_text']
logger.info(f"Translated prompt: {translated}")
return translated
return prompt
def filter_prompt(prompt):
"""๋ถ€์ ์ ˆํ•œ ๋‚ด์šฉ ํ•„ํ„ฐ๋ง"""
inappropriate_keywords = [
"nude", "naked", "nsfw", "porn", "sex", "explicit", "adult",
"xxx", "erotic", "sensual", "seductive", "provocative",
"intimate", "violence", "gore", "blood", "death", "kill",
"murder", "torture", "drug", "suicide", "abuse", "hate",
"discrimination"
]
prompt_lower = prompt.lower()
for keyword in inappropriate_keywords:
if keyword in prompt_lower:
logger.warning(f"Inappropriate content detected: {keyword}")
return False, "๋ถ€์ ์ ˆํ•œ ๋‚ด์šฉ์ด ํฌํ•จ๋œ ํ”„๋กฌํ”„ํŠธ์ž…๋‹ˆ๋‹ค."
return True, prompt
def enhance_prompt(prompt, enhance_toggle):
"""GPT๋ฅผ ์‚ฌ์šฉํ•œ ํ”„๋กฌํ”„ํŠธ ๊ฐœ์„ """
if not enhance_toggle:
logger.info("Prompt enhancement disabled")
return prompt
try:
client = get_openai_client()
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": prompt},
]
response = client.chat.completions.create(
model="gpt-4-mini",
messages=messages,
max_tokens=200,
)
enhanced_prompt = response.choices[0].message.content.strip()
logger.info(f"Enhanced prompt: {enhanced_prompt}")
return enhanced_prompt
except Exception as e:
logger.error(f"Prompt enhancement failed: {str(e)}")
return prompt
def save_image(image, directory=GALLERY_PATH):
"""์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€ ์ €์žฅ"""
try:
os.makedirs(directory, exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
random_suffix = os.urandom(4).hex()
filename = f"generated_{timestamp}_{random_suffix}.png"
filepath = os.path.join(directory, filename)
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
if image.mode != 'RGB':
image = image.convert('RGB')
image.save(filepath, format='PNG', optimize=True, quality=100)
logger.info(f"Image saved: {filepath}")
return filepath
except Exception as e:
logger.error(f"Error saving image: {str(e)}")
return None
def add_watermark(video_path):
"""๋น„๋””์˜ค์— ์›Œํ„ฐ๋งˆํฌ ์ถ”๊ฐ€"""
try:
cap = cv2.VideoCapture(video_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
text = "GiniGEN.AI"
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = height * 0.05 / 30
thickness = 2
color = (255, 255, 255)
(text_width, text_height), _ = cv2.getTextSize(text, font, font_scale, thickness)
margin = int(height * 0.02)
x_pos = width - text_width - margin
y_pos = height - margin
output_path = os.path.join(VIDEO_GALLERY_PATH, f"watermarked_{os.path.basename(video_path)}")
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
cv2.putText(frame, text, (x_pos, y_pos), font, font_scale, color, thickness)
out.write(frame)
cap.release()
out.release()
logger.info(f"Video watermarked: {output_path}")
return output_path
except Exception as e:
logger.error(f"Error adding watermark: {str(e)}")
return video_path
def upload_to_catbox(file_path):
"""ํŒŒ์ผ์„ catbox.moe์— ์—…๋กœ๋“œ"""
try:
logger.info(f"Uploading file: {file_path}")
url = "https://catbox.moe/user/api.php"
file_extension = Path(file_path).suffix.lower()
supported_extensions = {
'.jpg': 'image/jpeg',
'.jpeg': 'image/jpeg',
'.png': 'image/png',
'.gif': 'image/gif',
'.mp4': 'video/mp4'
}
if file_extension not in supported_extensions:
logger.error(f"Unsupported file type: {file_extension}")
return None
files = {
'fileToUpload': (
os.path.basename(file_path),
open(file_path, 'rb'),
supported_extensions[file_extension]
)
}
data = {
'reqtype': 'fileupload',
'userhash': CATBOX_USER_HASH
}
response = requests.post(url, files=files, data=data)
if response.status_code == 200 and response.text.startswith('http'):
logger.info(f"Upload successful: {response.text}")
return response.text
else:
raise Exception(f"Upload failed: {response.text}")
except Exception as e:
logger.error(f"Upload error: {str(e)}")
return None
# ๋ชจ๋ธ ๋งค๋‹ˆ์ € ์ธ์Šคํ„ด์Šค ์ƒ์„ฑ
model_manager = ModelManager()
# Gradio ์ธํ„ฐํŽ˜์ด์Šค ๊ด€๋ จ ์ƒ์ˆ˜ ๋ฐ ์„ค์ •
PRESET_OPTIONS = [
{"label": "1216x704, 41 frames", "width": 1216, "height": 704, "num_frames": 41},
{"label": "1088x704, 49 frames", "width": 1088, "height": 704, "num_frames": 49},
{"label": "1056x640, 57 frames", "width": 1056, "height": 640, "num_frames": 57},
{"label": "448x448, 100 frames", "width": 448, "height": 448, "num_frames": 100},
{"label": "448x448, 200 frames", "width": 448, "height": 448, "num_frames": 200},
{"label": "448x448, 300 frames", "width": 448, "height": 448, "num_frames": 300},
{"label": "640x640, 80 frames", "width": 640, "height": 640, "num_frames": 80},
{"label": "640x640, 120 frames", "width": 640, "height": 640, "num_frames": 120},
{"label": "768x768, 64 frames", "width": 768, "height": 768, "num_frames": 64},
{"label": "768x768, 90 frames", "width": 768, "height": 768, "num_frames": 90},
{"label": "720x720, 64 frames", "width": 768, "height": 768, "num_frames": 64},
{"label": "720x720, 100 frames", "width": 768, "height": 768, "num_frames": 100},
{"label": "768x512, 97 frames", "width": 768, "height": 512, "num_frames": 97},
{"label": "512x512, 160 frames", "width": 512, "height": 512, "num_frames": 160},
{"label": "512x512, 200 frames", "width": 512, "height": 512, "num_frames": 200},
]
# ๋ฉ”์ธ ์ฒ˜๋ฆฌ ํ•จ์ˆ˜๋“ค
@spaces.GPU(duration=90)
def generate_image(
prompt,
height,
width,
steps,
scales,
seed,
enhance_prompt_toggle=False,
progress=gr.Progress()
):
"""์ด๋ฏธ์ง€ ์ƒ์„ฑ ํ•จ์ˆ˜"""
try:
# ํ”„๋กฌํ”„ํŠธ ์ „์ฒ˜๋ฆฌ
processed_prompt = process_prompt(prompt)
is_safe, filtered_prompt = filter_prompt(processed_prompt)
if not is_safe:
raise gr.Error("๋ถ€์ ์ ˆํ•œ ๋‚ด์šฉ์ด ํฌํ•จ๋œ ํ”„๋กฌํ”„ํŠธ์ž…๋‹ˆ๋‹ค.")
if enhance_prompt_toggle:
filtered_prompt = enhance_prompt(filtered_prompt, True)
# Flux ๋ชจ๋ธ ๋กœ๋“œ
pipe = model_manager.load_model("flux")
with Timer("Image generation"), torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
generated_image = pipe(
prompt=[filtered_prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
# ์ด๋ฏธ์ง€ ์ €์žฅ ๋ฐ ๋ฐ˜ํ™˜
saved_path = save_image(generated_image)
if saved_path is None:
raise gr.Error("์ด๋ฏธ์ง€ ์ €์žฅ์— ์‹คํŒจํ–ˆ์Šต๋‹ˆ๋‹ค.")
return Image.open(saved_path)
except Exception as e:
logger.error(f"Image generation error: {str(e)}")
raise gr.Error(f"์ด๋ฏธ์ง€ ์ƒ์„ฑ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}")
finally:
model_manager.unload_current_model()
torch.cuda.empty_cache()
gc.collect()
@spaces.GPU(duration=90)
def generate_video_xora(
prompt,
enhance_prompt_toggle,
negative_prompt,
frame_rate,
seed,
num_inference_steps,
guidance_scale,
height,
width,
num_frames,
progress=gr.Progress()
):
"""Xora ๋น„๋””์˜ค ์ƒ์„ฑ ํ•จ์ˆ˜"""
try:
# ํ”„๋กฌํ”„ํŠธ ์ฒ˜๋ฆฌ
prompt = process_prompt(prompt)
negative_prompt = process_prompt(negative_prompt)
if len(prompt.strip()) < 50:
raise gr.Error("ํ”„๋กฌํ”„ํŠธ๋Š” ์ตœ์†Œ 50์ž ์ด์ƒ์ด์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.")
prompt = enhance_prompt(prompt, enhance_prompt_toggle)
# Xora ๋ชจ๋ธ ๋กœ๋“œ
pipeline = model_manager.load_model("xora")
sample = {
"prompt": prompt,
"prompt_attention_mask": None,
"negative_prompt": negative_prompt,
"negative_prompt_attention_mask": None,
"media_items": None,
}
generator = torch.Generator(device="cuda").manual_seed(seed)
def progress_callback(step, timestep, kwargs):
progress((step + 1) / num_inference_steps)
with torch.no_grad():
images = pipeline(
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
guidance_scale=guidance_scale,
generator=generator,
output_type="pt",
height=height,
width=width,
num_frames=num_frames,
frame_rate=frame_rate,
**sample,
is_video=True,
vae_per_channel_normalize=True,
conditioning_method=ConditioningMethod.UNCONDITIONAL,
mixed_precision=True,
callback_on_step_end=progress_callback,
).images
# ๋น„๋””์˜ค ์ €์žฅ
output_path = os.path.join(VIDEO_GALLERY_PATH, f"generated_{int(time.time())}.mp4")
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
video_np = (video_np * 255).astype(np.uint8)
out = cv2.VideoWriter(
output_path,
cv2.VideoWriter_fourcc(*"mp4v"),
frame_rate,
(width, height)
)
for frame in video_np[..., ::-1]:
out.write(frame)
out.release()
# ์›Œํ„ฐ๋งˆํฌ ์ถ”๊ฐ€
final_path = add_watermark(output_path)
return final_path
except Exception as e:
logger.error(f"Video generation error: {str(e)}")
raise gr.Error(f"๋น„๋””์˜ค ์ƒ์„ฑ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}")
finally:
model_manager.unload_current_model()
torch.cuda.empty_cache()
gc.collect()
def generate_video_replicate(image, prompt):
"""Replicate API๋ฅผ ์‚ฌ์šฉํ•œ ๋น„๋””์˜ค ์ƒ์„ฑ ํ•จ์ˆ˜"""
try:
is_safe, filtered_prompt = filter_prompt(prompt)
if not is_safe:
raise gr.Error("๋ถ€์ ์ ˆํ•œ ๋‚ด์šฉ์ด ํฌํ•จ๋œ ํ”„๋กฌํ”„ํŠธ์ž…๋‹ˆ๋‹ค.")
if not image:
raise gr.Error("์ด๋ฏธ์ง€๋ฅผ ์—…๋กœ๋“œํ•ด์ฃผ์„ธ์š”.")
# ์ด๋ฏธ์ง€ ์—…๋กœ๋“œ
image_url = upload_to_catbox(image)
if not image_url:
raise gr.Error("์ด๋ฏธ์ง€ ์—…๋กœ๋“œ์— ์‹คํŒจํ–ˆ์Šต๋‹ˆ๋‹ค.")
# Replicate API ํ˜ธ์ถœ
client = replicate.Client(api_token=REPLICATE_API_TOKEN)
output = client.run(
"minimax/video-01-live",
input={
"prompt": filtered_prompt,
"first_frame_image": image_url
}
)
# ๊ฒฐ๊ณผ ๋น„๋””์˜ค ์ €์žฅ
output_path = os.path.join(VIDEO_GALLERY_PATH, f"replicate_{int(time.time())}.mp4")
if hasattr(output, 'read'):
with open(output_path, "wb") as f:
f.write(output.read())
elif isinstance(output, str):
response = requests.get(output)
with open(output_path, "wb") as f:
f.write(response.content)
# ์›Œํ„ฐ๋งˆํฌ ์ถ”๊ฐ€
final_path = add_watermark(output_path)
return final_path
except Exception as e:
logger.error(f"Replicate video generation error: {str(e)}")
raise gr.Error(f"๋น„๋””์˜ค ์ƒ์„ฑ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}")
# Gradio UI ์Šคํƒ€์ผ
css = """
.gradio-container {
font-family: 'Pretendard', 'Noto Sans KR', sans-serif !important;
}
.title {
text-align: center;
font-size: 2.5rem;
font-weight: bold;
color: #2a9d8f;
margin: 1rem 0;
padding: 1rem;
background: linear-gradient(to right, #264653, #2a9d8f);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.generate-btn {
background: linear-gradient(to right, #2a9d8f, #264653) !important;
border: none !important;
color: white !important;
font-weight: bold !important;
transition: all 0.3s ease !important;
}
.generate-btn:hover {
transform: translateY(-2px) !important;
box-shadow: 0 5px 15px rgba(42, 157, 143, 0.4) !important;
}
.gallery {
display: grid;
grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
gap: 1rem;
padding: 1rem;
}
.gallery img {
width: 100%;
height: auto;
border-radius: 8px;
transition: transform 0.3s ease;
}
.gallery img:hover {
transform: scale(1.05);
}
"""
# Gradio ์ธํ„ฐํŽ˜์ด์Šค ๊ตฌ์„ฑ
def create_ui():
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.HTML('<div class="title">AI Image & Video Generator</div>')
with gr.Tabs():
# ์ด๋ฏธ์ง€ ์ƒ์„ฑ ํƒญ
with gr.Tab("Image Generation"):
with gr.Row():
with gr.Column(scale=3):
img_prompt = gr.Textbox(
label="Image Description",
placeholder="์ด๋ฏธ์ง€ ์„ค๋ช…์„ ์ž…๋ ฅํ•˜์„ธ์š”... (ํ•œ๊ธ€ ์ž…๋ ฅ ๊ฐ€๋Šฅ)",
lines=3
)
img_enhance_toggle = Toggle(
label="Enhance Prompt",
value=False,
interactive=True,
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
img_height = gr.Slider(
label="Height",
minimum=256,
maximum=1024,
step=64,
value=768
)
img_width = gr.Slider(
label="Width",
minimum=256,
maximum=1024,
step=64,
value=768
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
seed = gr.Number(
label="Seed",
value=random.randint(0, MAX_SEED),
precision=0
)
img_generate_btn = gr.Button(
"Generate Image",
variant="primary",
elem_classes=["generate-btn"]
)
with gr.Column(scale=4):
img_output = gr.Image(
label="Generated Image",
type="pil",
format="png"
)
img_gallery = gr.Gallery(
label="Image Gallery",
show_label=True,
elem_id="gallery",
columns=[4],
rows=[2],
height="auto",
object_fit="cover"
)
# Xora ๋น„๋””์˜ค ์ƒ์„ฑ ํƒญ
with gr.Tab("Xora Video Generation"):
with gr.Row():
with gr.Column(scale=3):
xora_prompt = gr.Textbox(
label="Video Description",
placeholder="๋น„๋””์˜ค ์„ค๋ช…์„ ์ž…๋ ฅํ•˜์„ธ์š”... (์ตœ์†Œ 50์ž)",
lines=5
)
xora_enhance_toggle = Toggle(
label="Enhance Prompt",
value=False
)
xora_negative_prompt = gr.Textbox(
label="Negative Prompt",
value="low quality, worst quality, deformed, distorted",
lines=2
)
xora_preset = gr.Dropdown(
choices=[p["label"] for p in PRESET_OPTIONS],
value="512x512, 160 frames",
label="Resolution Preset"
)
xora_frame_rate = gr.Slider(
label="Frame Rate",
minimum=6,
maximum=60,
step=1,
value=20
)
with gr.Accordion("Advanced Settings", open=False):
xora_seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=random.randint(0, MAX_SEED)
)
xora_steps = gr.Slider(
label="Inference Steps",
minimum=5,
maximum=150,
step=5,
value=40
)
xora_guidance = gr.Slider(
label="Guidance Scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=4.2
)
xora_generate_btn = gr.Button(
"Generate Video",
variant="primary",
elem_classes=["generate-btn"]
)
with gr.Column(scale=4):
xora_output = gr.Video(label="Generated Video")
xora_gallery = gr.Gallery(
label="Video Gallery",
show_label=True,
columns=[4],
rows=[2],
height="auto",
object_fit="cover"
)
# Replicate ๋น„๋””์˜ค ์ƒ์„ฑ ํƒญ
with gr.Tab("Image to Video"):
with gr.Row():
with gr.Column(scale=3):
upload_image = gr.Image(
type="filepath",
label="Upload First Frame Image"
)
replicate_prompt = gr.Textbox(
label="Video Description",
placeholder="๋น„๋””์˜ค ์„ค๋ช…์„ ์ž…๋ ฅํ•˜์„ธ์š”...",
lines=3
)
replicate_generate_btn = gr.Button(
"Generate Video",
variant="primary",
elem_classes=["generate-btn"]
)
with gr.Column(scale=4):
replicate_output = gr.Video(label="Generated Video")
replicate_gallery = gr.Gallery(
label="Video Gallery",
show_label=True,
columns=[4],
rows=[2],
height="auto",
object_fit="cover"
)
# ์ด๋ฒคํŠธ ํ•ธ๋“ค๋Ÿฌ ์—ฐ๊ฒฐ
img_generate_btn.click(
fn=generate_image,
inputs=[
img_prompt,
img_height,
img_width,
steps,
scales,
seed,
img_enhance_toggle
],
outputs=img_output
)
xora_generate_btn.click(
fn=generate_video_xora,
inputs=[
xora_prompt,
xora_enhance_toggle,
xora_negative_prompt,
xora_frame_rate,
xora_seed,
xora_steps,
xora_guidance,
img_height,
img_width,
gr.Slider(label="Number of Frames", value=60)
],
outputs=xora_output
)
replicate_generate_btn.click(
fn=generate_video_replicate,
inputs=[upload_image, replicate_prompt],
outputs=replicate_output
)
# ๊ฐค๋Ÿฌ๋ฆฌ ์ž๋™ ์—…๋ฐ์ดํŠธ
demo.load(lambda: None, None, [img_gallery, xora_gallery, replicate_gallery], every=30)
return demo
if __name__ == "__main__":
# ์ดˆ๊ธฐํ™”
init_directories()
setup_cuda()
# UI ์‹คํ–‰
demo = create_ui()
demo.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(
share=True,
show_api=False,
server_name="0.0.0.0",
server_port=7860,
debug=False
)