File size: 31,968 Bytes
0e06f3a
3fbccb1
 
 
 
 
 
 
 
1504958
 
 
3fbccb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1504958
 
 
 
 
 
3fbccb1
fafc380
b1f2a77
3fbccb1
 
 
 
 
 
7f76633
3fbccb1
005df4d
3fbccb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fafc380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fbccb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7acc84e
3fbccb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc55fb3
3fbccb1
 
 
 
 
cc55fb3
3fbccb1
 
 
 
 
1504958
 
 
3fbccb1
 
 
 
 
 
 
 
 
 
 
 
 
1504958
b1f2a77
3fbccb1
b1f2a77
3fbccb1
b1f2a77
3fbccb1
b1f2a77
 
 
3fbccb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1504958
 
 
f6ed375
874180d
af2936b
874180d
af2936b
874180d
af2936b
874180d
af2936b
1504958
874180d
af2936b
1504958
 
3fbccb1
 
 
 
 
 
 
 
 
 
 
 
 
b1f2a77
3fbccb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1f2a77
3fbccb1
 
 
 
 
 
b1f2a77
 
3fbccb1
 
 
 
 
 
 
 
 
 
 
 
1504958
3fbccb1
 
 
 
 
1504958
3fbccb1
 
1504958
3fbccb1
1504958
3fbccb1
 
1504958
3fbccb1
 
 
 
 
 
 
 
 
 
 
 
1504958
fe6bb2b
1504958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fbccb1
1504958
 
3fbccb1
 
 
 
f6ed375
3fbccb1
 
 
 
 
1504958
3fbccb1
 
 
 
1b643b2
3fbccb1
 
 
47f3fb4
3fbccb1
 
 
 
 
 
 
b1f2a77
3fbccb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1f2a77
 
3fbccb1
 
 
 
 
 
 
 
 
 
 
 
 
 
b1f2a77
3fbccb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1f2a77
 
3fbccb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1f2a77
 
3fbccb1
 
 
 
b1f2a77
 
3fbccb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1504958
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
import spaces
import argparse
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download, snapshot_download
import gradio as gr
from gradio_toggle import Toggle
import torch
from diffusers import FluxPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
from PIL import Image
from transformers import pipeline, CLIPProcessor, CLIPModel, T5EncoderModel, T5Tokenizer
import replicate
import logging
import requests
from pathlib import Path
import cv2
import numpy as np
import sys
import io
import json
import gc
import csv
from openai import OpenAI
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
from xora.schedulers.rf import RectifiedFlowScheduler
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline
from xora.utils.conditioning_method import ConditioningMethod
from functools import lru_cache
from diffusers.pipelines.flux import FluxPipeline

# ๋กœ๊น… ์„ค์ •
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# ์ƒ์ˆ˜ ๋ฐ ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ์„ค์ •
MAX_SEED = np.iinfo(np.int32).max
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
MODEL_PATH = "asset"
CACHE_PATH = path.join(path.dirname(path.abspath(__file__)), "models")
GALLERY_PATH = path.join(PERSISTENT_DIR, "gallery")
VIDEO_GALLERY_PATH = path.join(PERSISTENT_DIR, "video_gallery")

# API ํ‚ค ์„ค์ •
HF_TOKEN = os.getenv("HF_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
CATBOX_USER_HASH = "e7a96fc68dd4c7d2954040cd5"
REPLICATE_API_TOKEN = os.getenv("API_KEY")

# ์‹œ์Šคํ…œ ํ”„๋กฌํ”„ํŠธ ๋กœ๋“œ
SYSTEM_PROMPT_PATH = "assets/system_prompt_t2v.txt"
with open(SYSTEM_PROMPT_PATH, "r") as f:
    SYSTEM_PROMPT = f.read()

# ๋””๋ ‰ํ† ๋ฆฌ ์ดˆ๊ธฐํ™”
def init_directories():
    """ํ•„์š”ํ•œ ๋””๋ ‰ํ† ๋ฆฌ๋“ค์„ ์ƒ์„ฑ"""
    directories = [GALLERY_PATH, VIDEO_GALLERY_PATH, CACHE_PATH]
    for directory in directories:
        os.makedirs(directory, exist_ok=True)
        logger.info(f"Directory initialized: {directory}")

# CUDA ์„ค์ •
def setup_cuda():
    """CUDA ๊ด€๋ จ ์„ค์ • ์ดˆ๊ธฐํ™”"""
    torch.backends.cuda.matmul.allow_tf32 = False
    torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
    torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
    torch.backends.cudnn.allow_tf32 = False
    torch.backends.cudnn.deterministic = False
    torch.backends.cuda.preferred_blas_library = "cublas"
    torch.set_float32_matmul_precision("highest")
    logger.info("CUDA settings initialized")


# Model initialization
if not path.exists(cache_path):
    os.makedirs(cache_path, exist_ok=True)

try:
    pipe = FluxPipeline.from_pretrained(
        "black-forest-labs/FLUX.1-dev",
        torch_dtype=torch.bfloat16,
        cache_dir=cache_path
    )
    lora_path = hf_hub_download(
        "ByteDance/Hyper-SD",
        "Hyper-FLUX.1-dev-8steps-lora.safetensors",
        cache_dir=cache_path
    )
    pipe.load_lora_weights(lora_path)
    pipe.fuse_lora(lora_scale=0.125)
    pipe.to(device="cuda", dtype=torch.bfloat16)
    pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained(
        "CompVis/stable-diffusion-safety-checker",
        cache_dir=cache_path
    )
except Exception as e:
    logger.error(f"Error initializing FluxPipeline: {str(e)}")
    raise

# ๋ชจ๋ธ ๊ด€๋ฆฌ ํด๋ž˜์Šค
class ModelManager:
    def __init__(self):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.models = {}
        self.current_model = None
        logger.info(f"ModelManager initialized with device: {self.device}")

    def load_model(self, model_name):
        """๋ชจ๋ธ์„ ๋™์ ์œผ๋กœ ๋กœ๋“œ"""
        if self.current_model == model_name and model_name in self.models:
            return self.models[model_name]

        # ํ˜„์žฌ ๋กœ๋“œ๋œ ๋ชจ๋ธ ์–ธ๋กœ๋“œ
        self.unload_current_model()

        logger.info(f"Loading model: {model_name}")
        try:
            if model_name == "flux":
                model = self._load_flux_model()
            elif model_name == "xora":
                model = self._load_xora_model()
            elif model_name == "clip":
                model = self._load_clip_model()
            else:
                raise ValueError(f"Unknown model: {model_name}")

            self.models[model_name] = model
            self.current_model = model_name
            return model

        except Exception as e:
            logger.error(f"Error loading model {model_name}: {str(e)}")
            raise

    def unload_current_model(self):
        """ํ˜„์žฌ ๋กœ๋“œ๋œ ๋ชจ๋ธ ์–ธ๋กœ๋“œ"""
        if self.current_model:
            logger.info(f"Unloading model: {self.current_model}")
            if self.current_model in self.models:
                del self.models[self.current_model]
            self.current_model = None
            torch.cuda.empty_cache()
            gc.collect()

    def _load_flux_model(self):
        """Flux ๋ชจ๋ธ ๋กœ๋“œ"""
        pipe = FluxPipeline.from_pretrained(
            "black-forest-labs/FLUX.1-dev",
            torch_dtype=torch.bfloat16
        )
        pipe.load_lora_weights(
            hf_hub_download(
                "ByteDance/Hyper-SD",
                "Hyper-FLUX.1-dev-8steps-lora.safetensors"
            )
        )
        pipe.fuse_lora(lora_scale=0.125)
        pipe.to(device=self.device, dtype=torch.bfloat16)
        pipe.safety_checker = safety_checker.StableDiffusionSafetyChecker.from_pretrained(
            "CompVis/stable-diffusion-safety-checker"
        )
        return pipe

    def _load_xora_model(self):
        """Xora ๋ชจ๋ธ ๋กœ๋“œ"""
        if not path.exists(MODEL_PATH):
            snapshot_download(
                "Lightricks/LTX-Video",
                revision='c7c8ad4c2ddba847b94e8bfaefbd30bd8669fafc',
                local_dir=MODEL_PATH,
                repo_type="model",
                token=HF_TOKEN
            )

        vae = load_vae(Path(MODEL_PATH) / "vae")
        unet = load_unet(Path(MODEL_PATH) / "unet")
        scheduler = load_scheduler(Path(MODEL_PATH) / "scheduler")
        patchifier = SymmetricPatchifier(patch_size=1)
        text_encoder = T5EncoderModel.from_pretrained(
            "PixArt-alpha/PixArt-XL-2-1024-MS",
            subfolder="text_encoder"
        ).to(self.device)
        tokenizer = T5Tokenizer.from_pretrained(
            "PixArt-alpha/PixArt-XL-2-1024-MS",
            subfolder="tokenizer"
        )

        return XoraVideoPipeline(
            transformer=unet,
            patchifier=patchifier,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            scheduler=scheduler,
            vae=vae
        ).to(self.device)

    def _load_clip_model(self):
        """CLIP ๋ชจ๋ธ ๋กœ๋“œ"""
        model = CLIPModel.from_pretrained(
            "openai/clip-vit-base-patch32",
            cache_dir=MODEL_PATH
        ).to(self.device)
        processor = CLIPProcessor.from_pretrained(
            "openai/clip-vit-base-patch32",
            cache_dir=MODEL_PATH
        )
        return {"model": model, "processor": processor}

# ๋ฒˆ์—ญ๊ธฐ ์ดˆ๊ธฐํ™”
@lru_cache(maxsize=None)
def get_translator():
    """๋ฒˆ์—ญ๊ธฐ๋ฅผ lazy loading์œผ๋กœ ์ดˆ๊ธฐํ™”"""
    return pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

# OpenAI ํด๋ผ์ด์–ธํŠธ ์ดˆ๊ธฐํ™”
@lru_cache(maxsize=None)
def get_openai_client():
    """OpenAI ํด๋ผ์ด์–ธํŠธ๋ฅผ lazy loading์œผ๋กœ ์ดˆ๊ธฐํ™”"""
    return OpenAI(api_key=OPENAI_API_KEY)



# ์œ ํ‹ธ๋ฆฌํ‹ฐ ํ•จ์ˆ˜๋“ค
class Timer:
    """์ž‘์—… ์‹œ๊ฐ„ ์ธก์ •์„ ์œ„ํ•œ ์ปจํ…์ŠคํŠธ ๋งค๋‹ˆ์ €"""
    def __init__(self, method_name="timed process"):
        self.method = method_name
        
    def __enter__(self):
        self.start = time.time()
        logger.info(f"{self.method} starts")
        
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        logger.info(f"{self.method} took {str(round(end - self.start, 2))}s")

def process_prompt(prompt):
    """ํ”„๋กฌํ”„ํŠธ ์ „์ฒ˜๋ฆฌ (ํ•œ๊ธ€ ๋ฒˆ์—ญ ๋ฐ ํ•„ํ„ฐ๋ง)"""
    if any(ord('๊ฐ€') <= ord(char) <= ord('ํžฃ') for char in prompt):
        translator = get_translator()
        translated = translator(prompt)[0]['translation_text']
        logger.info(f"Translated prompt: {translated}")
        return translated
    return prompt

def filter_prompt(prompt):
    """๋ถ€์ ์ ˆํ•œ ๋‚ด์šฉ ํ•„ํ„ฐ๋ง"""
    inappropriate_keywords = [
        "nude", "naked", "nsfw", "porn", "sex", "explicit", "adult", 
        "xxx", "erotic", "sensual", "seductive", "provocative", 
        "intimate", "violence", "gore", "blood", "death", "kill", 
        "murder", "torture", "drug", "suicide", "abuse", "hate", 
        "discrimination"
    ]
    
    prompt_lower = prompt.lower()
    for keyword in inappropriate_keywords:
        if keyword in prompt_lower:
            logger.warning(f"Inappropriate content detected: {keyword}")
            return False, "๋ถ€์ ์ ˆํ•œ ๋‚ด์šฉ์ด ํฌํ•จ๋œ ํ”„๋กฌํ”„ํŠธ์ž…๋‹ˆ๋‹ค."
    return True, prompt

def enhance_prompt(prompt, enhance_toggle):
    """GPT๋ฅผ ์‚ฌ์šฉํ•œ ํ”„๋กฌํ”„ํŠธ ๊ฐœ์„ """
    if not enhance_toggle:
        logger.info("Prompt enhancement disabled")
        return prompt

    try:
        client = get_openai_client()
        messages = [
            {"role": "system", "content": SYSTEM_PROMPT},
            {"role": "user", "content": prompt},
        ]
        
        response = client.chat.completions.create(
            model="gpt-4-mini",
            messages=messages,
            max_tokens=200,
        )
        
        enhanced_prompt = response.choices[0].message.content.strip()
        logger.info(f"Enhanced prompt: {enhanced_prompt}")
        return enhanced_prompt
    except Exception as e:
        logger.error(f"Prompt enhancement failed: {str(e)}")
        return prompt

def save_image(image, directory=GALLERY_PATH):
    """์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€ ์ €์žฅ"""
    try:
        os.makedirs(directory, exist_ok=True)
        
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        random_suffix = os.urandom(4).hex()
        filename = f"generated_{timestamp}_{random_suffix}.png"
        filepath = os.path.join(directory, filename)
        
        if not isinstance(image, Image.Image):
            image = Image.fromarray(image)
            
        if image.mode != 'RGB':
            image = image.convert('RGB')
            
        image.save(filepath, format='PNG', optimize=True, quality=100)
        logger.info(f"Image saved: {filepath}")
        return filepath
    except Exception as e:
        logger.error(f"Error saving image: {str(e)}")
        return None

def add_watermark(video_path):
    """๋น„๋””์˜ค์— ์›Œํ„ฐ๋งˆํฌ ์ถ”๊ฐ€"""
    try:
        cap = cv2.VideoCapture(video_path)
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(cap.get(cv2.CAP_PROP_FPS))
        
        text = "GiniGEN.AI"
        font = cv2.FONT_HERSHEY_SIMPLEX
        font_scale = height * 0.05 / 30
        thickness = 2
        color = (255, 255, 255)
        
        (text_width, text_height), _ = cv2.getTextSize(text, font, font_scale, thickness)
        margin = int(height * 0.02)
        x_pos = width - text_width - margin
        y_pos = height - margin
        
        output_path = os.path.join(VIDEO_GALLERY_PATH, f"watermarked_{os.path.basename(video_path)}")
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
        
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
            cv2.putText(frame, text, (x_pos, y_pos), font, font_scale, color, thickness)
            out.write(frame)
        
        cap.release()
        out.release()
        logger.info(f"Video watermarked: {output_path}")
        return output_path
        
    except Exception as e:
        logger.error(f"Error adding watermark: {str(e)}")
        return video_path

def upload_to_catbox(file_path):
    """ํŒŒ์ผ์„ catbox.moe์— ์—…๋กœ๋“œ"""
    try:
        logger.info(f"Uploading file: {file_path}")
        url = "https://catbox.moe/user/api.php"
        
        file_extension = Path(file_path).suffix.lower()
        supported_extensions = {
            '.jpg': 'image/jpeg',
            '.jpeg': 'image/jpeg',
            '.png': 'image/png',
            '.gif': 'image/gif',
            '.mp4': 'video/mp4'
        }
        
        if file_extension not in supported_extensions:
            logger.error(f"Unsupported file type: {file_extension}")
            return None

        files = {
            'fileToUpload': (
                os.path.basename(file_path),
                open(file_path, 'rb'),
                supported_extensions[file_extension]
            )
        }
        
        data = {
            'reqtype': 'fileupload',
            'userhash': CATBOX_USER_HASH
        }

        response = requests.post(url, files=files, data=data)
        
        if response.status_code == 200 and response.text.startswith('http'):
            logger.info(f"Upload successful: {response.text}")
            return response.text
        else:
            raise Exception(f"Upload failed: {response.text}")

    except Exception as e:
        logger.error(f"Upload error: {str(e)}")
        return None

# ๋ชจ๋ธ ๋งค๋‹ˆ์ € ์ธ์Šคํ„ด์Šค ์ƒ์„ฑ
model_manager = ModelManager()


# Gradio ์ธํ„ฐํŽ˜์ด์Šค ๊ด€๋ จ ์ƒ์ˆ˜ ๋ฐ ์„ค์ •
PRESET_OPTIONS = [
    {"label": "1216x704, 41 frames", "width": 1216, "height": 704, "num_frames": 41},
    {"label": "1088x704, 49 frames", "width": 1088, "height": 704, "num_frames": 49},
    {"label": "1056x640, 57 frames", "width": 1056, "height": 640, "num_frames": 57},
    {"label": "448x448, 100 frames", "width": 448, "height": 448, "num_frames": 100},
    {"label": "448x448, 200 frames", "width": 448, "height": 448, "num_frames": 200},
    {"label": "448x448, 300 frames", "width": 448, "height": 448, "num_frames": 300},
    {"label": "640x640, 80 frames", "width": 640, "height": 640, "num_frames": 80},
    {"label": "640x640, 120 frames", "width": 640, "height": 640, "num_frames": 120},
    {"label": "768x768, 64 frames", "width": 768, "height": 768, "num_frames": 64},
    {"label": "768x768, 90 frames", "width": 768, "height": 768, "num_frames": 90},
    {"label": "720x720, 64 frames", "width": 768, "height": 768, "num_frames": 64},
    {"label": "720x720, 100 frames", "width": 768, "height": 768, "num_frames": 100},
    {"label": "768x512, 97 frames", "width": 768, "height": 512, "num_frames": 97},
    {"label": "512x512, 160 frames", "width": 512, "height": 512, "num_frames": 160},
    {"label": "512x512, 200 frames", "width": 512, "height": 512, "num_frames": 200},
]

# ๋ฉ”์ธ ์ฒ˜๋ฆฌ ํ•จ์ˆ˜๋“ค
@spaces.GPU(duration=90)
def generate_image(
    prompt,
    height,
    width,
    steps,
    scales,
    seed,
    enhance_prompt_toggle=False,
    progress=gr.Progress()
):
    """์ด๋ฏธ์ง€ ์ƒ์„ฑ ํ•จ์ˆ˜"""
    try:
        # ํ”„๋กฌํ”„ํŠธ ์ „์ฒ˜๋ฆฌ
        processed_prompt = process_prompt(prompt)
        is_safe, filtered_prompt = filter_prompt(processed_prompt)
        if not is_safe:
            raise gr.Error("๋ถ€์ ์ ˆํ•œ ๋‚ด์šฉ์ด ํฌํ•จ๋œ ํ”„๋กฌํ”„ํŠธ์ž…๋‹ˆ๋‹ค.")
            
        if enhance_prompt_toggle:
            filtered_prompt = enhance_prompt(filtered_prompt, True)

        # Flux ๋ชจ๋ธ ๋กœ๋“œ
        pipe = model_manager.load_model("flux")
        
        with Timer("Image generation"), torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
            generated_image = pipe(
                prompt=[filtered_prompt],
                generator=torch.Generator().manual_seed(int(seed)),
                num_inference_steps=int(steps),
                guidance_scale=float(scales),
                height=int(height),
                width=int(width),
                max_sequence_length=256
            ).images[0]
            
            # ์ด๋ฏธ์ง€ ์ €์žฅ ๋ฐ ๋ฐ˜ํ™˜
            saved_path = save_image(generated_image)
            if saved_path is None:
                raise gr.Error("์ด๋ฏธ์ง€ ์ €์žฅ์— ์‹คํŒจํ–ˆ์Šต๋‹ˆ๋‹ค.")
                
            return Image.open(saved_path)

    except Exception as e:
        logger.error(f"Image generation error: {str(e)}")
        raise gr.Error(f"์ด๋ฏธ์ง€ ์ƒ์„ฑ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}")
    finally:
        model_manager.unload_current_model()
        torch.cuda.empty_cache()
        gc.collect()

@spaces.GPU(duration=90)
def generate_video_xora(
    prompt,
    enhance_prompt_toggle,
    negative_prompt,
    frame_rate,
    seed,
    num_inference_steps,
    guidance_scale,
    height,
    width,
    num_frames,
    progress=gr.Progress()
):
    """Xora ๋น„๋””์˜ค ์ƒ์„ฑ ํ•จ์ˆ˜"""
    try:
        # ํ”„๋กฌํ”„ํŠธ ์ฒ˜๋ฆฌ
        prompt = process_prompt(prompt)
        negative_prompt = process_prompt(negative_prompt)

        if len(prompt.strip()) < 50:
            raise gr.Error("ํ”„๋กฌํ”„ํŠธ๋Š” ์ตœ์†Œ 50์ž ์ด์ƒ์ด์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.")

        prompt = enhance_prompt(prompt, enhance_prompt_toggle)

        # Xora ๋ชจ๋ธ ๋กœ๋“œ
        pipeline = model_manager.load_model("xora")

        sample = {
            "prompt": prompt,
            "prompt_attention_mask": None,
            "negative_prompt": negative_prompt,
            "negative_prompt_attention_mask": None,
            "media_items": None,
        }

        generator = torch.Generator(device="cuda").manual_seed(seed)

        def progress_callback(step, timestep, kwargs):
            progress((step + 1) / num_inference_steps)

        with torch.no_grad():
            images = pipeline(
                num_inference_steps=num_inference_steps,
                num_images_per_prompt=1,
                guidance_scale=guidance_scale,
                generator=generator,
                output_type="pt",
                height=height,
                width=width,
                num_frames=num_frames,
                frame_rate=frame_rate,
                **sample,
                is_video=True,
                vae_per_channel_normalize=True,
                conditioning_method=ConditioningMethod.UNCONDITIONAL,
                mixed_precision=True,
                callback_on_step_end=progress_callback,
            ).images

        # ๋น„๋””์˜ค ์ €์žฅ
        output_path = os.path.join(VIDEO_GALLERY_PATH, f"generated_{int(time.time())}.mp4")
        video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
        video_np = (video_np * 255).astype(np.uint8)
        
        out = cv2.VideoWriter(
            output_path,
            cv2.VideoWriter_fourcc(*"mp4v"),
            frame_rate,
            (width, height)
        )
        
        for frame in video_np[..., ::-1]:
            out.write(frame)
        out.release()

        # ์›Œํ„ฐ๋งˆํฌ ์ถ”๊ฐ€
        final_path = add_watermark(output_path)
        return final_path

    except Exception as e:
        logger.error(f"Video generation error: {str(e)}")
        raise gr.Error(f"๋น„๋””์˜ค ์ƒ์„ฑ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}")
    finally:
        model_manager.unload_current_model()
        torch.cuda.empty_cache()
        gc.collect()

def generate_video_replicate(image, prompt):
    """Replicate API๋ฅผ ์‚ฌ์šฉํ•œ ๋น„๋””์˜ค ์ƒ์„ฑ ํ•จ์ˆ˜"""
    try:
        is_safe, filtered_prompt = filter_prompt(prompt)
        if not is_safe:
            raise gr.Error("๋ถ€์ ์ ˆํ•œ ๋‚ด์šฉ์ด ํฌํ•จ๋œ ํ”„๋กฌํ”„ํŠธ์ž…๋‹ˆ๋‹ค.")

        if not image:
            raise gr.Error("์ด๋ฏธ์ง€๋ฅผ ์—…๋กœ๋“œํ•ด์ฃผ์„ธ์š”.")

        # ์ด๋ฏธ์ง€ ์—…๋กœ๋“œ
        image_url = upload_to_catbox(image)
        if not image_url:
            raise gr.Error("์ด๋ฏธ์ง€ ์—…๋กœ๋“œ์— ์‹คํŒจํ–ˆ์Šต๋‹ˆ๋‹ค.")

        # Replicate API ํ˜ธ์ถœ
        client = replicate.Client(api_token=REPLICATE_API_TOKEN)
        output = client.run(
            "minimax/video-01-live",
            input={
                "prompt": filtered_prompt,
                "first_frame_image": image_url
            }
        )

        # ๊ฒฐ๊ณผ ๋น„๋””์˜ค ์ €์žฅ
        output_path = os.path.join(VIDEO_GALLERY_PATH, f"replicate_{int(time.time())}.mp4")
        
        if hasattr(output, 'read'):
            with open(output_path, "wb") as f:
                f.write(output.read())
        elif isinstance(output, str):
            response = requests.get(output)
            with open(output_path, "wb") as f:
                f.write(response.content)

        # ์›Œํ„ฐ๋งˆํฌ ์ถ”๊ฐ€
        final_path = add_watermark(output_path)
        return final_path

    except Exception as e:
        logger.error(f"Replicate video generation error: {str(e)}")
        raise gr.Error(f"๋น„๋””์˜ค ์ƒ์„ฑ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}")


# Gradio UI ์Šคํƒ€์ผ
css = """
.gradio-container {
    font-family: 'Pretendard', 'Noto Sans KR', sans-serif !important;
}

.title {
    text-align: center;
    font-size: 2.5rem;
    font-weight: bold;
    color: #2a9d8f;
    margin: 1rem 0;
    padding: 1rem;
    background: linear-gradient(to right, #264653, #2a9d8f);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
}

.generate-btn {
    background: linear-gradient(to right, #2a9d8f, #264653) !important;
    border: none !important;
    color: white !important;
    font-weight: bold !important;
    transition: all 0.3s ease !important;
}

.generate-btn:hover {
    transform: translateY(-2px) !important;
    box-shadow: 0 5px 15px rgba(42, 157, 143, 0.4) !important;
}

.gallery {
    display: grid;
    grid-template-columns: repeat(auto-fill, minmax(200px, 1fr));
    gap: 1rem;
    padding: 1rem;
}

.gallery img {
    width: 100%;
    height: auto;
    border-radius: 8px;
    transition: transform 0.3s ease;
}

.gallery img:hover {
    transform: scale(1.05);
}
"""

# Gradio ์ธํ„ฐํŽ˜์ด์Šค ๊ตฌ์„ฑ
def create_ui():
    with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
        gr.HTML('<div class="title">AI Image & Video Generator</div>')
        
        with gr.Tabs():
            # ์ด๋ฏธ์ง€ ์ƒ์„ฑ ํƒญ
            with gr.Tab("Image Generation"):
                with gr.Row():
                    with gr.Column(scale=3):
                        img_prompt = gr.Textbox(
                            label="Image Description",
                            placeholder="์ด๋ฏธ์ง€ ์„ค๋ช…์„ ์ž…๋ ฅํ•˜์„ธ์š”... (ํ•œ๊ธ€ ์ž…๋ ฅ ๊ฐ€๋Šฅ)",
                            lines=3
                        )
                        
                        img_enhance_toggle = Toggle(
                            label="Enhance Prompt",
                            value=False,
                            interactive=True,
                        )
                        
                        with gr.Accordion("Advanced Settings", open=False):
                            with gr.Row():
                                img_height = gr.Slider(
                                    label="Height",
                                    minimum=256,
                                    maximum=1024,
                                    step=64,
                                    value=768
                                )
                                img_width = gr.Slider(
                                    label="Width",
                                    minimum=256,
                                    maximum=1024,
                                    step=64,
                                    value=768
                                )
                            
                            with gr.Row():
                                steps = gr.Slider(
                                    label="Inference Steps",
                                    minimum=6,
                                    maximum=25,
                                    step=1,
                                    value=8
                                )
                                scales = gr.Slider(
                                    label="Guidance Scale",
                                    minimum=0.0,
                                    maximum=5.0,
                                    step=0.1,
                                    value=3.5
                                )
                            
                            seed = gr.Number(
                                label="Seed",
                                value=random.randint(0, MAX_SEED),
                                precision=0
                            )
                        
                        img_generate_btn = gr.Button(
                            "Generate Image",
                            variant="primary",
                            elem_classes=["generate-btn"]
                        )

                    with gr.Column(scale=4):
                        img_output = gr.Image(
                            label="Generated Image",
                            type="pil",
                            format="png"
                        )
                        img_gallery = gr.Gallery(
                            label="Image Gallery",
                            show_label=True,
                            elem_id="gallery",
                            columns=[4],
                            rows=[2],
                            height="auto",
                            object_fit="cover"
                        )

            # Xora ๋น„๋””์˜ค ์ƒ์„ฑ ํƒญ
            with gr.Tab("Xora Video Generation"):
                with gr.Row():
                    with gr.Column(scale=3):
                        xora_prompt = gr.Textbox(
                            label="Video Description",
                            placeholder="๋น„๋””์˜ค ์„ค๋ช…์„ ์ž…๋ ฅํ•˜์„ธ์š”... (์ตœ์†Œ 50์ž)",
                            lines=5
                        )
                        
                        xora_enhance_toggle = Toggle(
                            label="Enhance Prompt",
                            value=False
                        )
                        
                        xora_negative_prompt = gr.Textbox(
                            label="Negative Prompt",
                            value="low quality, worst quality, deformed, distorted",
                            lines=2
                        )
                        
                        xora_preset = gr.Dropdown(
                            choices=[p["label"] for p in PRESET_OPTIONS],
                            value="512x512, 160 frames",
                            label="Resolution Preset"
                        )
                        
                        xora_frame_rate = gr.Slider(
                            label="Frame Rate",
                            minimum=6,
                            maximum=60,
                            step=1,
                            value=20
                        )
                        
                        with gr.Accordion("Advanced Settings", open=False):
                            xora_seed = gr.Slider(
                                label="Seed",
                                minimum=0,
                                maximum=MAX_SEED,
                                step=1,
                                value=random.randint(0, MAX_SEED)
                            )
                            xora_steps = gr.Slider(
                                label="Inference Steps",
                                minimum=5,
                                maximum=150,
                                step=5,
                                value=40
                            )
                            xora_guidance = gr.Slider(
                                label="Guidance Scale",
                                minimum=1.0,
                                maximum=10.0,
                                step=0.1,
                                value=4.2
                            )
                        
                        xora_generate_btn = gr.Button(
                            "Generate Video",
                            variant="primary",
                            elem_classes=["generate-btn"]
                        )

                    with gr.Column(scale=4):
                        xora_output = gr.Video(label="Generated Video")
                        xora_gallery = gr.Gallery(
                            label="Video Gallery",
                            show_label=True,
                            columns=[4],
                            rows=[2],
                            height="auto",
                            object_fit="cover"
                        )

            # Replicate ๋น„๋””์˜ค ์ƒ์„ฑ ํƒญ
            with gr.Tab("Image to Video"):
                with gr.Row():
                    with gr.Column(scale=3):
                        upload_image = gr.Image(
                            type="filepath",
                            label="Upload First Frame Image"
                        )
                        replicate_prompt = gr.Textbox(
                            label="Video Description",
                            placeholder="๋น„๋””์˜ค ์„ค๋ช…์„ ์ž…๋ ฅํ•˜์„ธ์š”...",
                            lines=3
                        )
                        replicate_generate_btn = gr.Button(
                            "Generate Video",
                            variant="primary",
                            elem_classes=["generate-btn"]
                        )

                    with gr.Column(scale=4):
                        replicate_output = gr.Video(label="Generated Video")
                        replicate_gallery = gr.Gallery(
                            label="Video Gallery",
                            show_label=True,
                            columns=[4],
                            rows=[2],
                            height="auto",
                            object_fit="cover"
                        )

        # ์ด๋ฒคํŠธ ํ•ธ๋“ค๋Ÿฌ ์—ฐ๊ฒฐ
        img_generate_btn.click(
            fn=generate_image,
            inputs=[
                img_prompt,
                img_height,
                img_width,
                steps,
                scales,
                seed,
                img_enhance_toggle
            ],
            outputs=img_output
        )

        xora_generate_btn.click(
            fn=generate_video_xora,
            inputs=[
                xora_prompt,
                xora_enhance_toggle,
                xora_negative_prompt,
                xora_frame_rate,
                xora_seed,
                xora_steps,
                xora_guidance,
                img_height,
                img_width,
                gr.Slider(label="Number of Frames", value=60)
            ],
            outputs=xora_output
        )

        replicate_generate_btn.click(
            fn=generate_video_replicate,
            inputs=[upload_image, replicate_prompt],
            outputs=replicate_output
        )

        # ๊ฐค๋Ÿฌ๋ฆฌ ์ž๋™ ์—…๋ฐ์ดํŠธ
        demo.load(lambda: None, None, [img_gallery, xora_gallery, replicate_gallery], every=30)

        return demo

if __name__ == "__main__":
    # ์ดˆ๊ธฐํ™”
    init_directories()
    setup_cuda()
    
    # UI ์‹คํ–‰
    demo = create_ui()
    demo.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(
        share=True,
        show_api=False,
        server_name="0.0.0.0",
        server_port=7860,
        debug=False
    )