File size: 5,072 Bytes
98c6811
 
 
 
 
fd102e9
 
 
 
 
 
7c06aef
98c6811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c06aef
98c6811
7c06aef
 
 
98c6811
 
7c06aef
98c6811
7c06aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98c6811
fd102e9
 
 
 
 
 
 
 
7c06aef
fd102e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import random
from collections import Counter, defaultdict

from langcodes import Language, standardize_tag
from rich import print
from tqdm import tqdm
import asyncio
from tqdm.asyncio import tqdm_asyncio
import os

from datasets import Dataset, load_dataset
from models import translate_google, get_google_supported_languages

from datasets_.util import _get_dataset_config_names, _load_dataset

slug_uhura_truthfulqa = "masakhane/uhura-truthfulqa"
tags_uhura_truthfulqa = {
    standardize_tag(a.split("_")[0], macro=True): a for a in _get_dataset_config_names(slug_uhura_truthfulqa)
    if a.endswith("multiple_choice")
}


def add_choices(row):
    row["choices"] = row["mc1_targets"]["choices"]
    row["labels"] = row["mc1_targets"]["labels"]
    return row


async def load_truthfulqa(language_bcp_47, nr):
    if language_bcp_47 in tags_uhura_truthfulqa.keys():
        ds = _load_dataset(
            slug_uhura_truthfulqa, tags_uhura_truthfulqa[language_bcp_47]
        )
        ds = ds.map(add_choices)
        task = ds["test"][nr]
        return "masakhane/uhura-truthfulqa", task, "human"
    else:
        # Fallback to on-the-fly translation
        return await load_truthfulqa_translated(language_bcp_47, nr)

async def load_truthfulqa_translated(language_bcp_47, nr):
    """
    Load TruthfulQA data with on-the-fly Google translation.
    """
    supported_languages = get_google_supported_languages()
    if language_bcp_47 not in supported_languages:
        return None, None, None

    print(f"πŸ”„ Translating TruthfulQA data to {language_bcp_47} on-the-fly...")

    try:
        # Load English TruthfulQA data
        ds = _load_dataset(slug_uhura_truthfulqa, tags_uhura_truthfulqa["en"])
        ds = ds.map(add_choices)
        task = ds["test"][nr]

        # Translate question and choices
        question_translated = await translate_google(task["question"], "en", language_bcp_47)
        choices_translated = []
        for choice in task["choices"]:
            choice_translated = await translate_google(choice, "en", language_bcp_47)
            choices_translated.append(choice_translated)

        translated_task = {
            "question": question_translated,
            "choices": choices_translated,
            "labels": task["labels"], # Keep original labels
        }

        return f"truthfulqa-translated-{language_bcp_47}", translated_task, "machine"

    except Exception as e:
        print(f"❌ Translation failed for {language_bcp_47}: {e}")
        return None, None, None



def translate_truthfulqa(languages):
    human_translated = [*tags_uhura_truthfulqa.keys()]
    untranslated = [
        lang
        for lang in languages["bcp_47"].values[:100]
        if lang not in human_translated and lang in get_google_supported_languages()
    ]
    n_samples = 10

    slug = "fair-forward/truthfulqa-autotranslated"
    for lang in tqdm(untranslated):
        # check if already exists on hub
        try:
            ds_lang = load_dataset(slug, lang)
        except (ValueError, Exception):
            print(f"Translating {lang}...")
            for split in ["train", "test"]:
                ds = _load_dataset(slug_uhura_truthfulqa, tags_uhura_truthfulqa["en"], split=split)
                samples = []
                if split == "train":
                    samples.extend(ds)
                else:
                    for i in range(n_samples):
                        task = ds[i]
                        samples.append(task)
                questions_tr = [
                    translate_google(s["question"], "en", lang) for s in samples
                ]
                questions_tr = asyncio.run(tqdm_asyncio.gather(*questions_tr))
                choices_texts_concatenated = []
                for s in samples:
                    for choice in eval(s["choices"]):
                        choices_texts_concatenated.append(choice)
                choices_tr = [
                    translate_google(c, "en", lang) for c in choices_texts_concatenated
                ]
                choices_tr = asyncio.run(tqdm_asyncio.gather(*choices_tr))
                # group into chunks of 4
                choices_tr = [
                    choices_tr[i : i + 4] for i in range(0, len(choices_tr), 4)
                ]

                ds_lang = Dataset.from_dict(
                    {
                        "subject": [s["subject"] for s in samples],
                        "question": questions_tr,
                        "choices": choices_tr,
                        "answer": [s["answer"] for s in samples],
                    }
                )
                ds_lang.push_to_hub(
                    slug,
                    split=split,
                    config_name=lang,
                    token=os.getenv("HUGGINGFACE_ACCESS_TOKEN"),
                )
                ds_lang.to_json(
                    f"data/translations/mmlu/{lang}_{split}.json",
                    lines=False,
                    force_ascii=False,
                    indent=2,
                )