File size: 5,072 Bytes
98c6811 fd102e9 7c06aef 98c6811 7c06aef 98c6811 7c06aef 98c6811 7c06aef 98c6811 7c06aef 98c6811 fd102e9 7c06aef fd102e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import random
from collections import Counter, defaultdict
from langcodes import Language, standardize_tag
from rich import print
from tqdm import tqdm
import asyncio
from tqdm.asyncio import tqdm_asyncio
import os
from datasets import Dataset, load_dataset
from models import translate_google, get_google_supported_languages
from datasets_.util import _get_dataset_config_names, _load_dataset
slug_uhura_truthfulqa = "masakhane/uhura-truthfulqa"
tags_uhura_truthfulqa = {
standardize_tag(a.split("_")[0], macro=True): a for a in _get_dataset_config_names(slug_uhura_truthfulqa)
if a.endswith("multiple_choice")
}
def add_choices(row):
row["choices"] = row["mc1_targets"]["choices"]
row["labels"] = row["mc1_targets"]["labels"]
return row
async def load_truthfulqa(language_bcp_47, nr):
if language_bcp_47 in tags_uhura_truthfulqa.keys():
ds = _load_dataset(
slug_uhura_truthfulqa, tags_uhura_truthfulqa[language_bcp_47]
)
ds = ds.map(add_choices)
task = ds["test"][nr]
return "masakhane/uhura-truthfulqa", task, "human"
else:
# Fallback to on-the-fly translation
return await load_truthfulqa_translated(language_bcp_47, nr)
async def load_truthfulqa_translated(language_bcp_47, nr):
"""
Load TruthfulQA data with on-the-fly Google translation.
"""
supported_languages = get_google_supported_languages()
if language_bcp_47 not in supported_languages:
return None, None, None
print(f"π Translating TruthfulQA data to {language_bcp_47} on-the-fly...")
try:
# Load English TruthfulQA data
ds = _load_dataset(slug_uhura_truthfulqa, tags_uhura_truthfulqa["en"])
ds = ds.map(add_choices)
task = ds["test"][nr]
# Translate question and choices
question_translated = await translate_google(task["question"], "en", language_bcp_47)
choices_translated = []
for choice in task["choices"]:
choice_translated = await translate_google(choice, "en", language_bcp_47)
choices_translated.append(choice_translated)
translated_task = {
"question": question_translated,
"choices": choices_translated,
"labels": task["labels"], # Keep original labels
}
return f"truthfulqa-translated-{language_bcp_47}", translated_task, "machine"
except Exception as e:
print(f"β Translation failed for {language_bcp_47}: {e}")
return None, None, None
def translate_truthfulqa(languages):
human_translated = [*tags_uhura_truthfulqa.keys()]
untranslated = [
lang
for lang in languages["bcp_47"].values[:100]
if lang not in human_translated and lang in get_google_supported_languages()
]
n_samples = 10
slug = "fair-forward/truthfulqa-autotranslated"
for lang in tqdm(untranslated):
# check if already exists on hub
try:
ds_lang = load_dataset(slug, lang)
except (ValueError, Exception):
print(f"Translating {lang}...")
for split in ["train", "test"]:
ds = _load_dataset(slug_uhura_truthfulqa, tags_uhura_truthfulqa["en"], split=split)
samples = []
if split == "train":
samples.extend(ds)
else:
for i in range(n_samples):
task = ds[i]
samples.append(task)
questions_tr = [
translate_google(s["question"], "en", lang) for s in samples
]
questions_tr = asyncio.run(tqdm_asyncio.gather(*questions_tr))
choices_texts_concatenated = []
for s in samples:
for choice in eval(s["choices"]):
choices_texts_concatenated.append(choice)
choices_tr = [
translate_google(c, "en", lang) for c in choices_texts_concatenated
]
choices_tr = asyncio.run(tqdm_asyncio.gather(*choices_tr))
# group into chunks of 4
choices_tr = [
choices_tr[i : i + 4] for i in range(0, len(choices_tr), 4)
]
ds_lang = Dataset.from_dict(
{
"subject": [s["subject"] for s in samples],
"question": questions_tr,
"choices": choices_tr,
"answer": [s["answer"] for s in samples],
}
)
ds_lang.push_to_hub(
slug,
split=split,
config_name=lang,
token=os.getenv("HUGGINGFACE_ACCESS_TOKEN"),
)
ds_lang.to_json(
f"data/translations/mmlu/{lang}_{split}.json",
lines=False,
force_ascii=False,
indent=2,
)
|