Upload from GitHub Actions: Merge pull request #9 from datenlabor-bmz/jn-dev
Browse files- .gitattributes +1 -0
- .gitignore +3 -0
- Dockerfile.eval +71 -0
- README.md +135 -0
- cloudbuild.yaml +5 -0
- deploy_eval.sh +29 -0
- evals/README.md +82 -0
- evals/backend.py +53 -36
- evals/datasets_/__init__.py +1 -0
- evals/datasets_/arc.py +33 -17
- evals/datasets_/mgsm.py +14 -9
- evals/datasets_/mmlu.py +49 -9
- evals/datasets_/truthfulqa.py +43 -6
- evals/datasets_/util.py +7 -0
- evals/main.py +137 -35
- evals/main_gcs.py +213 -0
- evals/models.py +68 -13
- evals/tasks.py +95 -79
- frontend/src/App.js +5 -1
- frontend/src/components/ModelTable.js +17 -7
- frontend/src/components/ScoreColumns.js +17 -10
- frontend/src/components/ScoreField.js +2 -1
- frontend/src/components/WorldMap.js +16 -2
- languages.json +17 -17
- models.json +1085 -85
- pyproject.toml +10 -0
- results.json +0 -0
- system_architecture_diagram.md +90 -56
- uv.lock +0 -0
.gitattributes
CHANGED
@@ -1 +1,2 @@
|
|
1 |
evals/data_flow_architecture.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
1 |
evals/data_flow_architecture.png filter=lfs diff=lfs merge=lfs -text
|
2 |
+
results.json filter=lfs diff=lfs merge=lfs -text
|
.gitignore
CHANGED
@@ -20,3 +20,6 @@ wheels/
|
|
20 |
# folders and files to be ignored
|
21 |
.specstory/
|
22 |
.cursorindexingignore
|
|
|
|
|
|
|
|
20 |
# folders and files to be ignored
|
21 |
.specstory/
|
22 |
.cursorindexingignore
|
23 |
+
|
24 |
+
# Project-specific files
|
25 |
+
.dockerignore.eval
|
Dockerfile.eval
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.12-slim
|
2 |
+
|
3 |
+
# Set working directory
|
4 |
+
WORKDIR /app
|
5 |
+
|
6 |
+
# Install system dependencies
|
7 |
+
RUN apt-get update && apt-get install -y \
|
8 |
+
curl \
|
9 |
+
&& rm -rf /var/lib/apt/lists/*
|
10 |
+
|
11 |
+
# Copy requirements and install Python dependencies
|
12 |
+
COPY pyproject.toml uv.lock ./
|
13 |
+
RUN pip install uv && uv sync --frozen
|
14 |
+
|
15 |
+
# Copy application code
|
16 |
+
COPY . .
|
17 |
+
|
18 |
+
# Verify dependencies are installed
|
19 |
+
RUN .venv/bin/python -c "import pandas, datasets, evaluate, fastapi, uvicorn, google.cloud.storage, google.cloud.translate, dotenv, elevenlabs, huggingface_hub, joblib, language_data, openai, requests, scipy, aiolimiter, sentencepiece, langcodes, rich, tqdm; print('β
All dependencies verified')"
|
20 |
+
|
21 |
+
# Set environment variables with conservative limits
|
22 |
+
ENV N_SENTENCES=20
|
23 |
+
ENV MAX_LANGUAGES=150
|
24 |
+
ENV COST_LIMIT_USD=20
|
25 |
+
|
26 |
+
# Create a startup script with cost monitoring and HTTP server
|
27 |
+
RUN echo '#!/bin/bash\n\
|
28 |
+
\n\
|
29 |
+
# Force immediate log flushing for Cloud Run visibility\n\
|
30 |
+
export PYTHONUNBUFFERED=1\n\
|
31 |
+
export PYTHONIOENCODING=utf-8\n\
|
32 |
+
\n\
|
33 |
+
echo "π Starting AI Language Evaluation..."\n\
|
34 |
+
echo "π Configuration: $N_SENTENCES sentences, $MAX_LANGUAGES languages"\n\
|
35 |
+
echo "π° Cost limit: $COST_LIMIT_USD USD"\n\
|
36 |
+
echo "π‘οΈ Cost protection enabled"\n\
|
37 |
+
echo "π§ Logging: Unbuffered Python output enabled"\n\
|
38 |
+
\n\
|
39 |
+
# Start a simple HTTP server to satisfy Cloud Run requirements\n\
|
40 |
+
python -m http.server 8080 &\n\
|
41 |
+
HTTP_SERVER_PID=$!\n\
|
42 |
+
\n\
|
43 |
+
# Start cost monitoring in background\n\
|
44 |
+
(\n\
|
45 |
+
start_time=$(date +%s)\n\
|
46 |
+
while true; do\n\
|
47 |
+
current_time=$(date +%s)\n\
|
48 |
+
elapsed_hours=$(( (current_time - start_time) / 3600 ))\n\
|
49 |
+
if [ $elapsed_hours -ge 24 ]; then\n\
|
50 |
+
echo "β οΈ MAX RUNTIME REACHED! Stopping evaluation..."\n\
|
51 |
+
pkill -f "python evals/main_gcs.py"\n\
|
52 |
+
break\n\
|
53 |
+
fi\n\
|
54 |
+
sleep 300 # Check every 5 minutes\n\
|
55 |
+
done\n\
|
56 |
+
) &\n\
|
57 |
+
\n\
|
58 |
+
# Run the evaluation with forced log flushing\n\
|
59 |
+
cd /app && .venv/bin/python -u evals/main_gcs.py\n\
|
60 |
+
\n\
|
61 |
+
# Stop the HTTP server\n\
|
62 |
+
kill $HTTP_SERVER_PID\n\
|
63 |
+
\n\
|
64 |
+
echo "β
Evaluation completed!"\n\
|
65 |
+
' > /app/start.sh && chmod +x /app/start.sh
|
66 |
+
|
67 |
+
# Expose port (for Cloud Run requirements)
|
68 |
+
EXPOSE 8080
|
69 |
+
|
70 |
+
# Run the evaluation with resource limits
|
71 |
+
CMD ["/app/start.sh"]
|
README.md
CHANGED
@@ -43,12 +43,147 @@ For tag meaning, see https://huggingface.co/spaces/leaderboards/LeaderboardsExpl
|
|
43 |
|
44 |
_Tracking language proficiency of AI models for every language_
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
## Evaluate
|
47 |
|
|
|
48 |
```bash
|
49 |
uv run --extra dev evals/main.py
|
50 |
```
|
51 |
|
|
|
|
|
|
|
|
|
|
|
52 |
## Explore
|
53 |
|
54 |
```bash
|
|
|
43 |
|
44 |
_Tracking language proficiency of AI models for every language_
|
45 |
|
46 |
+
## System Architecture
|
47 |
+
|
48 |
+
The AI Language Monitor evaluates language models across 100+ languages using a comprehensive pipeline that combines model discovery, automated evaluation, and real-time visualization.
|
49 |
+
|
50 |
+
```mermaid
|
51 |
+
flowchart TD
|
52 |
+
%% Model Sources
|
53 |
+
A1["important_models<br/>Static Curated List"] --> D[load_models]
|
54 |
+
A2["get_historical_popular_models<br/>Web Scraping - Top 20"] --> D
|
55 |
+
A3["get_current_popular_models<br/>Web Scraping - Top 10"] --> D
|
56 |
+
A4["blocklist<br/>Exclusions"] --> D
|
57 |
+
|
58 |
+
%% Model Processing
|
59 |
+
D --> |"Combine & Dedupe"| E["Dynamic Model List<br/>~40-50 models"]
|
60 |
+
E --> |get_or_metadata| F["OpenRouter API<br/>Model Metadata"]
|
61 |
+
F --> |get_hf_metadata| G["HuggingFace API<br/>Model Details"]
|
62 |
+
G --> H["Enriched Model DataFrame"]
|
63 |
+
H --> |Save| I[models.json]
|
64 |
+
|
65 |
+
%% Model Validation & Cost Filtering
|
66 |
+
H --> |"Validate Models<br/>Check API Availability"| H1["Valid Models Only<br/>Cost β€ $20/1M tokens"]
|
67 |
+
H1 --> |"Timeout Protection<br/>120s for Large Models"| H2["Robust Model List"]
|
68 |
+
|
69 |
+
%% Language Data
|
70 |
+
J["languages.py<br/>BCP-47 + Population"] --> K["Top 100 Languages"]
|
71 |
+
|
72 |
+
%% Task Registry with Unified Prompting
|
73 |
+
L["tasks.py<br/>7 Evaluation Tasks"] --> M["Task Functions<br/>Unified English Zero-Shot"]
|
74 |
+
M --> M1["translation_from/to<br/>BLEU + ChrF"]
|
75 |
+
M --> M2["classification<br/>Accuracy"]
|
76 |
+
M --> M3["mmlu<br/>Accuracy"]
|
77 |
+
M --> M4["arc<br/>Accuracy"]
|
78 |
+
M --> M5["truthfulqa<br/>Accuracy"]
|
79 |
+
M --> M6["mgsm<br/>Accuracy"]
|
80 |
+
|
81 |
+
%% On-the-fly Translation with Origin Tagging
|
82 |
+
subgraph OTF [On-the-fly Dataset Translation]
|
83 |
+
direction LR
|
84 |
+
DS_raw["Raw English Dataset<br/>(e.g., MMLU)"] --> Google_Translate["Google Translate API"]
|
85 |
+
Google_Translate --> DS_translated["Translated Dataset<br/>(e.g., German MMLU)<br/>Origin: 'machine'"]
|
86 |
+
DS_native["Native Dataset<br/>(e.g., German MMLU)<br/>Origin: 'human'"]
|
87 |
+
end
|
88 |
+
|
89 |
+
%% Evaluation Pipeline
|
90 |
+
H2 --> |"models ID"| N["main.py / main_gcs.py<br/>evaluate"]
|
91 |
+
K --> |"languages bcp_47"| N
|
92 |
+
L --> |"tasks.items"| N
|
93 |
+
N --> |"Filter by model.tasks"| O["Valid Combinations<br/>Model Γ Language Γ Task"]
|
94 |
+
O --> |"10 samples each"| P["Evaluation Execution<br/>Batch Processing"]
|
95 |
+
|
96 |
+
%% Task Execution with Origin Tracking
|
97 |
+
P --> Q1[translate_and_evaluate<br/>Origin: 'human']
|
98 |
+
P --> Q2[classify_and_evaluate<br/>Origin: 'human']
|
99 |
+
P --> Q3[mmlu_and_evaluate<br/>Origin: 'human'/'machine']
|
100 |
+
P --> Q4[arc_and_evaluate<br/>Origin: 'human'/'machine']
|
101 |
+
P --> Q5[truthfulqa_and_evaluate<br/>Origin: 'human'/'machine']
|
102 |
+
P --> Q6[mgsm_and_evaluate<br/>Origin: 'human'/'machine']
|
103 |
+
|
104 |
+
%% API Calls with Error Handling
|
105 |
+
Q1 --> |"complete() API<br/>Rate Limiting"| R["OpenRouter<br/>Model Inference"]
|
106 |
+
Q2 --> |"complete() API<br/>Rate Limiting"| R
|
107 |
+
Q3 --> |"complete() API<br/>Rate Limiting"| R
|
108 |
+
Q4 --> |"complete() API<br/>Rate Limiting"| R
|
109 |
+
Q5 --> |"complete() API<br/>Rate Limiting"| R
|
110 |
+
Q6 --> |"complete() API<br/>Rate Limiting"| R
|
111 |
+
|
112 |
+
%% Results Processing with Origin Aggregation
|
113 |
+
R --> |Scores| S["Result Aggregation<br/>Mean by model+lang+task+origin"]
|
114 |
+
S --> |Save| T[results.json]
|
115 |
+
|
116 |
+
%% Backend & Frontend with Origin-Specific Metrics
|
117 |
+
T --> |Read| U[backend.py]
|
118 |
+
I --> |Read| U
|
119 |
+
U --> |make_model_table| V["Model Rankings<br/>Origin-Specific Metrics"]
|
120 |
+
U --> |make_country_table| W["Country Aggregation"]
|
121 |
+
U --> |"API Endpoint"| X["FastAPI /api/data<br/>arc_accuracy_human<br/>arc_accuracy_machine"]
|
122 |
+
X --> |"JSON Response"| Y["Frontend React App"]
|
123 |
+
|
124 |
+
%% UI Components
|
125 |
+
Y --> Z1["WorldMap.js<br/>Country Visualization"]
|
126 |
+
Y --> Z2["ModelTable.js<br/>Model Rankings"]
|
127 |
+
Y --> Z3["LanguageTable.js<br/>Language Coverage"]
|
128 |
+
Y --> Z4["DatasetTable.js<br/>Task Performance"]
|
129 |
+
|
130 |
+
%% Data Sources with Origin Information
|
131 |
+
subgraph DS ["Data Sources"]
|
132 |
+
DS1["Flores-200<br/>Translation Sentences<br/>Origin: 'human'"]
|
133 |
+
DS2["MMLU/AfriMMLU<br/>Knowledge QA<br/>Origin: 'human'"]
|
134 |
+
DS3["ARC<br/>Science Reasoning<br/>Origin: 'human'"]
|
135 |
+
DS4["TruthfulQA<br/>Truthfulness<br/>Origin: 'human'"]
|
136 |
+
DS5["MGSM<br/>Math Problems<br/>Origin: 'human'"]
|
137 |
+
end
|
138 |
+
|
139 |
+
DS1 --> Q1
|
140 |
+
DS2 --> Q3
|
141 |
+
DS3 --> Q4
|
142 |
+
DS4 --> Q5
|
143 |
+
DS5 --> Q6
|
144 |
+
|
145 |
+
DS_translated --> Q3
|
146 |
+
DS_translated --> Q4
|
147 |
+
DS_translated --> Q5
|
148 |
+
|
149 |
+
DS_native --> Q3
|
150 |
+
DS_native --> Q4
|
151 |
+
DS_native --> Q5
|
152 |
+
|
153 |
+
%% Styling - Neutral colors that work in both dark and light modes
|
154 |
+
classDef modelSource fill:#f8f9fa,stroke:#6c757d,color:#212529
|
155 |
+
classDef evaluation fill:#e9ecef,stroke:#495057,color:#212529
|
156 |
+
classDef api fill:#dee2e6,stroke:#6c757d,color:#212529
|
157 |
+
classDef storage fill:#d1ecf1,stroke:#0c5460,color:#0c5460
|
158 |
+
classDef frontend fill:#f8d7da,stroke:#721c24,color:#721c24
|
159 |
+
classDef translation fill:#d4edda,stroke:#155724,color:#155724
|
160 |
+
|
161 |
+
class A1,A2,A3,A4 modelSource
|
162 |
+
class Q1,Q2,Q3,Q4,Q5,Q6,P evaluation
|
163 |
+
class R,F,G,X api
|
164 |
+
class T,I storage
|
165 |
+
class Y,Z1,Z2,Z3,Z4 frontend
|
166 |
+
class Google_Translate,DS_translated,DS_native translation
|
167 |
+
```
|
168 |
+
|
169 |
+
**Key Features:**
|
170 |
+
- **Model Discovery**: Combines curated models with real-time trending models via web scraping
|
171 |
+
- **Multi-Task Evaluation**: 7 tasks across 100+ languages with origin tracking (human vs machine-translated)
|
172 |
+
- **Scalable Architecture**: Dual deployment (local/GitHub vs Google Cloud)
|
173 |
+
- **Real-time Visualization**: Interactive web interface with country-level insights
|
174 |
+
|
175 |
## Evaluate
|
176 |
|
177 |
+
### Local Development
|
178 |
```bash
|
179 |
uv run --extra dev evals/main.py
|
180 |
```
|
181 |
|
182 |
+
### Google Cloud Deployment
|
183 |
+
```bash
|
184 |
+
uv run --extra dev evals/main_gcs.py
|
185 |
+
```
|
186 |
+
|
187 |
## Explore
|
188 |
|
189 |
```bash
|
cloudbuild.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
steps:
|
2 |
+
- name: 'gcr.io/cloud-builders/docker'
|
3 |
+
args: ['build', '-f', 'Dockerfile.eval', '-t', 'gcr.io/$PROJECT_ID/ai-language-eval', '.']
|
4 |
+
images:
|
5 |
+
- 'gcr.io/$PROJECT_ID/ai-language-eval'
|
deploy_eval.sh
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
echo "Deploying AI Language Evaluation to Google Cloud Run"
|
4 |
+
echo "Cost limit: $20 USD"
|
5 |
+
echo "No runtime limit - will run to completion"
|
6 |
+
|
7 |
+
# Build the Docker image first
|
8 |
+
echo "π¨ Building Docker image..."
|
9 |
+
gcloud builds submit --config cloudbuild.yaml .
|
10 |
+
|
11 |
+
# Deploy the built image
|
12 |
+
echo "π Deploying to Cloud Run..."
|
13 |
+
gcloud run deploy ai-language-eval \
|
14 |
+
--image gcr.io/ai-language-eval-1754052060/ai-language-eval \
|
15 |
+
--region us-central1 \
|
16 |
+
--platform managed \
|
17 |
+
--memory 2Gi \
|
18 |
+
--cpu 1 \
|
19 |
+
--max-instances 1 \
|
20 |
+
--timeout 3600 \
|
21 |
+
--concurrency 1 \
|
22 |
+
--no-allow-unauthenticated \
|
23 |
+
--set-env-vars="N_SENTENCES=20,MAX_LANGUAGES=150,COST_LIMIT_USD=20,PYTHONUNBUFFERED=1,PYTHONIOENCODING=utf-8" \
|
24 |
+
--quiet
|
25 |
+
|
26 |
+
echo "β
Deployment completed!"
|
27 |
+
echo "π Service URL: $(gcloud run services describe ai-language-eval --region=us-central1 --format='value(status.url)')"
|
28 |
+
echo "π Monitor costs: https://console.cloud.google.com/billing/linkedaccount?project=ai-language-eval-1754052060"
|
29 |
+
echo "πΎ Results will be saved to: gs://ai-language-eval-results/"
|
evals/README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Evaluation Framework Documentation
|
2 |
+
|
3 |
+
This document outlines the current methodology used for evaluating multilingual language models in this project. We may The framework is designed to be fair, consistent, and robust, providing a standardized way to measure model performance across a diverse set of languages and tasks.
|
4 |
+
|
5 |
+
## Core Philosophy: English Zero-Shot Prompting
|
6 |
+
|
7 |
+
The core of our evaluation methodology is a **unified English zero-shot prompting strategy**. This means:
|
8 |
+
|
9 |
+
1. **Instructions are in English**: All models receive their instructions in clear, standardized English. This removes the quality of prompt translation as a variable, ensuring a fair comparison.
|
10 |
+
2. **Content is in the Target Language**: The actual content to be evaluated (e.g., a question for a QA task, a sentence for translation) is always presented in the target language. This directly tests the model's ability to understand instructions in one language and apply them to content in another.
|
11 |
+
3. **Zero-Shot (with a Twist)**: We do not provide in-context examples from the test datasets. However, for Question Answering tasks, we provide a static, English-based "scratchpad" example. This doesn't teach the model the answer, but rather the *format* for its reasoning and final output, which is crucial for reliable response parsing.
|
12 |
+
|
13 |
+
---
|
14 |
+
|
15 |
+
## Task-Specific Prompting Strategies
|
16 |
+
|
17 |
+
Below is a breakdown of the prompt structure for each of the active evaluation tasks.
|
18 |
+
|
19 |
+
### 1. Translation (`translation`)
|
20 |
+
|
21 |
+
- **Objective**: To evaluate the model's ability to translate text both to and from a target language.
|
22 |
+
- **Prompt Structure**: A direct, zero-shot English instruction.
|
23 |
+
```
|
24 |
+
Translate the following text to the {target_language_name} language; use the {script} script; reply only with the translation:
|
25 |
+
|
26 |
+
{original_sentence}
|
27 |
+
```
|
28 |
+
|
29 |
+
### 2. Classification (`classification`)
|
30 |
+
|
31 |
+
- **Objective**: To evaluate the model's ability to classify a paragraph of text into one of five topics.
|
32 |
+
- **Prompt Structure**: A direct, zero-shot English instruction providing the available topics.
|
33 |
+
```
|
34 |
+
Classify the following text into one of these topics: {topic1}, {topic2}, {topic3}, {topic4}, {topic5}.
|
35 |
+
Reply with only the topic name.
|
36 |
+
|
37 |
+
Text:
|
38 |
+
{paragraph_in_target_language}
|
39 |
+
```
|
40 |
+
|
41 |
+
### 3. Question Answering (`mmlu`, `arc`, `truthfulqa`)
|
42 |
+
|
43 |
+
- **Objective**: To evaluate the model's knowledge and reasoning abilities on multiple-choice questions.
|
44 |
+
- **Prompt Structure**: A zero-shot English instruction combined with a "reasoning scratchpad" format.
|
45 |
+
```
|
46 |
+
Solve the following multiple choice question. Reason step-by-step and then write the final answer as a single letter.
|
47 |
+
|
48 |
+
Response format: <reasoning> #### <letter>
|
49 |
+
|
50 |
+
---
|
51 |
+
|
52 |
+
{question_and_choices_in_target_language}
|
53 |
+
```
|
54 |
+
|
55 |
+
### 4. Math Word Problems (`mgsm`)
|
56 |
+
|
57 |
+
- **Objective**: To evaluate the model's ability to solve mathematical reasoning problems.
|
58 |
+
- **Prompt Structure**: Similar to the QA tasks, this uses a zero-shot English instruction with a reasoning scratchpad, but asks for a number as the final answer.
|
59 |
+
```
|
60 |
+
Solve the following math problem. Reason step-by-step and then write the final answer as a number.
|
61 |
+
|
62 |
+
Response format: <reasoning> #### <number>
|
63 |
+
|
64 |
+
---
|
65 |
+
|
66 |
+
{math_problem_in_target_language}
|
67 |
+
```
|
68 |
+
|
69 |
+
---
|
70 |
+
|
71 |
+
## Advantages and Disadvantages of this Methodology
|
72 |
+
|
73 |
+
### Advantages
|
74 |
+
|
75 |
+
- **Fairness and Control**: By using standardized English prompts, we eliminate the quality of prompt translation as a confounding variable, leading to a fairer comparison between models.
|
76 |
+
- **Robustness**: This approach directly tests a model's cross-lingual instruction-following capabilities, which is a key measure of its multilingual prowess.
|
77 |
+
- **Simplicity and Maintainability**: The zero-shot approach significantly simplifies the codebase, making it easier to maintain and extend.
|
78 |
+
|
79 |
+
### Disadvantages
|
80 |
+
|
81 |
+
- **Brittleness of Response Parsing**: The evaluation of QA and Math tasks is highly dependent on the model's ability to perfectly adhere to the `#### <answer>` format. Models that produce correct reasoning but fail to follow the format will be unfairly penalized.
|
82 |
+
- **Potential for Cross-Lingual Confusion**: Less capable models may struggle with instructions in one language and content in another, which could impact their performance.
|
evals/backend.py
CHANGED
@@ -26,7 +26,7 @@ task_metrics = [
|
|
26 |
"classification_accuracy",
|
27 |
"mmlu_accuracy",
|
28 |
"arc_accuracy",
|
29 |
-
|
30 |
"mgsm_accuracy",
|
31 |
]
|
32 |
|
@@ -46,65 +46,73 @@ def compute_normalized_average(df, metrics):
|
|
46 |
|
47 |
|
48 |
def make_model_table(df, models):
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
)
|
|
|
|
|
54 |
df["task_metric"] = df["task"] + "_" + df["metric"]
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
57 |
for metric in task_metrics:
|
58 |
if metric not in df.columns:
|
59 |
df[metric] = np.nan
|
|
|
60 |
df["average"] = compute_normalized_average(df, task_metrics)
|
61 |
df = df.sort_values(by="average", ascending=False).reset_index()
|
62 |
df = pd.merge(df, models, left_on="model", right_on="id", how="left")
|
63 |
df["rank"] = df.index + 1
|
|
|
|
|
|
|
|
|
|
|
64 |
df = df[
|
65 |
[
|
66 |
-
"rank",
|
67 |
-
"
|
68 |
-
|
69 |
-
"provider_name",
|
70 |
-
"hf_id",
|
71 |
-
"creation_date",
|
72 |
-
"size",
|
73 |
-
"type",
|
74 |
-
"license",
|
75 |
-
"cost",
|
76 |
-
"average",
|
77 |
-
*task_metrics,
|
78 |
]
|
79 |
]
|
80 |
return df
|
81 |
|
82 |
|
83 |
def make_language_table(df, languages):
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
)
|
|
|
|
|
89 |
df["task_metric"] = df["task"] + "_" + df["metric"]
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
92 |
for metric in task_metrics:
|
93 |
if metric not in df.columns:
|
94 |
df[metric] = np.nan
|
|
|
95 |
df["average"] = compute_normalized_average(df, task_metrics)
|
96 |
df = pd.merge(languages, df, on="bcp_47", how="outer")
|
97 |
df = df.sort_values(by="speakers", ascending=False)
|
|
|
|
|
|
|
|
|
|
|
98 |
df = df[
|
99 |
[
|
100 |
-
"bcp_47",
|
101 |
-
"
|
102 |
-
|
103 |
-
"speakers",
|
104 |
-
"family",
|
105 |
-
"average",
|
106 |
-
"in_benchmark",
|
107 |
-
*task_metrics,
|
108 |
]
|
109 |
]
|
110 |
return df
|
@@ -125,10 +133,18 @@ async def data(request: Request):
|
|
125 |
body = await request.body()
|
126 |
data = json.loads(body)
|
127 |
selected_languages = data.get("selectedLanguages", {})
|
128 |
-
df = scores.groupby(["model", "bcp_47", "task", "metric"]).mean().reset_index()
|
129 |
# lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer")
|
130 |
language_table = make_language_table(df, languages)
|
131 |
datasets_df = pd.read_json("datasets.json")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
if selected_languages:
|
133 |
# the filtering is only applied for the model table and the country data
|
134 |
df = df[df["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)]
|
@@ -143,6 +159,7 @@ async def data(request: Request):
|
|
143 |
"language_table": serialize(language_table),
|
144 |
"dataset_table": serialize(datasets_df),
|
145 |
"countries": serialize(countries),
|
|
|
146 |
}
|
147 |
return JSONResponse(content=all_tables)
|
148 |
|
|
|
26 |
"classification_accuracy",
|
27 |
"mmlu_accuracy",
|
28 |
"arc_accuracy",
|
29 |
+
"truthfulqa_accuracy",
|
30 |
"mgsm_accuracy",
|
31 |
]
|
32 |
|
|
|
46 |
|
47 |
|
48 |
def make_model_table(df, models):
|
49 |
+
# Create a combined task_metric for origin
|
50 |
+
df["task_metric_origin"] = df["task"] + "_" + df["metric"] + "_" + df["origin"]
|
51 |
+
|
52 |
+
# Pivot to get scores for each origin-specific metric
|
53 |
+
scores_pivot = df.pivot_table(index="model", columns="task_metric_origin", values="score", aggfunc="mean")
|
54 |
+
|
55 |
+
# Create the regular task_metric for the main average calculation
|
56 |
df["task_metric"] = df["task"] + "_" + df["metric"]
|
57 |
+
main_pivot = df.pivot_table(index="model", columns="task_metric", values="score", aggfunc="mean")
|
58 |
+
|
59 |
+
# Merge the two pivots
|
60 |
+
df = pd.merge(main_pivot, scores_pivot, on="model", how="outer")
|
61 |
+
|
62 |
for metric in task_metrics:
|
63 |
if metric not in df.columns:
|
64 |
df[metric] = np.nan
|
65 |
+
|
66 |
df["average"] = compute_normalized_average(df, task_metrics)
|
67 |
df = df.sort_values(by="average", ascending=False).reset_index()
|
68 |
df = pd.merge(df, models, left_on="model", right_on="id", how="left")
|
69 |
df["rank"] = df.index + 1
|
70 |
+
|
71 |
+
# Dynamically find all metric columns to include
|
72 |
+
final_cols = df.columns
|
73 |
+
metric_cols = [m for m in final_cols if any(tm in m for tm in task_metrics)]
|
74 |
+
|
75 |
df = df[
|
76 |
[
|
77 |
+
"rank", "model", "name", "provider_name", "hf_id", "creation_date",
|
78 |
+
"size", "type", "license", "cost", "average",
|
79 |
+
*sorted(list(set(metric_cols)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
]
|
81 |
]
|
82 |
return df
|
83 |
|
84 |
|
85 |
def make_language_table(df, languages):
|
86 |
+
# Create a combined task_metric for origin
|
87 |
+
df["task_metric_origin"] = df["task"] + "_" + df["metric"] + "_" + df["origin"]
|
88 |
+
|
89 |
+
# Pivot to get scores for each origin-specific metric
|
90 |
+
scores_pivot = df.pivot_table(index="bcp_47", columns="task_metric_origin", values="score", aggfunc="mean")
|
91 |
+
|
92 |
+
# Create the regular task_metric for the main average calculation
|
93 |
df["task_metric"] = df["task"] + "_" + df["metric"]
|
94 |
+
main_pivot = df.pivot_table(index="bcp_47", columns="task_metric", values="score", aggfunc="mean")
|
95 |
+
|
96 |
+
# Merge the two pivots
|
97 |
+
df = pd.merge(main_pivot, scores_pivot, on="bcp_47", how="outer")
|
98 |
+
|
99 |
for metric in task_metrics:
|
100 |
if metric not in df.columns:
|
101 |
df[metric] = np.nan
|
102 |
+
|
103 |
df["average"] = compute_normalized_average(df, task_metrics)
|
104 |
df = pd.merge(languages, df, on="bcp_47", how="outer")
|
105 |
df = df.sort_values(by="speakers", ascending=False)
|
106 |
+
|
107 |
+
# Dynamically find all metric columns to include
|
108 |
+
final_cols = df.columns
|
109 |
+
metric_cols = [m for m in final_cols if any(tm in m for tm in task_metrics)]
|
110 |
+
|
111 |
df = df[
|
112 |
[
|
113 |
+
"bcp_47", "language_name", "autonym", "speakers", "family",
|
114 |
+
"average", "in_benchmark",
|
115 |
+
*sorted(list(set(metric_cols)))
|
|
|
|
|
|
|
|
|
|
|
116 |
]
|
117 |
]
|
118 |
return df
|
|
|
133 |
body = await request.body()
|
134 |
data = json.loads(body)
|
135 |
selected_languages = data.get("selectedLanguages", {})
|
136 |
+
df = scores.groupby(["model", "bcp_47", "task", "metric", "origin"]).mean().reset_index()
|
137 |
# lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer")
|
138 |
language_table = make_language_table(df, languages)
|
139 |
datasets_df = pd.read_json("datasets.json")
|
140 |
+
|
141 |
+
# Identify which metrics have machine translations available
|
142 |
+
machine_translated_metrics = set()
|
143 |
+
for _, row in df.iterrows():
|
144 |
+
if row["origin"] == "machine":
|
145 |
+
metric_name = f"{row['task']}_{row['metric']}"
|
146 |
+
machine_translated_metrics.add(metric_name)
|
147 |
+
|
148 |
if selected_languages:
|
149 |
# the filtering is only applied for the model table and the country data
|
150 |
df = df[df["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)]
|
|
|
159 |
"language_table": serialize(language_table),
|
160 |
"dataset_table": serialize(datasets_df),
|
161 |
"countries": serialize(countries),
|
162 |
+
"machine_translated_metrics": list(machine_translated_metrics),
|
163 |
}
|
164 |
return JSONResponse(content=all_tables)
|
165 |
|
evals/datasets_/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# This file makes datasets_ a Python package
|
evals/datasets_/arc.py
CHANGED
@@ -3,9 +3,9 @@ from collections import Counter, defaultdict
|
|
3 |
|
4 |
from langcodes import Language, standardize_tag
|
5 |
from rich import print
|
6 |
-
from models import translate_google,
|
7 |
from tqdm import tqdm
|
8 |
-
from datasets import
|
9 |
import asyncio
|
10 |
from tqdm.asyncio import tqdm_asyncio
|
11 |
import os
|
@@ -14,27 +14,33 @@ from datasets_.util import _get_dataset_config_names, _load_dataset
|
|
14 |
|
15 |
slug_uhura_arc_easy = "masakhane/uhura-arc-easy"
|
16 |
tags_uhura_arc_easy = {
|
17 |
-
standardize_tag(a.split("_")[0], macro=True): a
|
|
|
18 |
if not a.endswith("unmatched")
|
19 |
}
|
20 |
|
21 |
|
22 |
random.seed(42)
|
23 |
-
id_sets_train = [
|
|
|
|
|
|
|
24 |
common_ids_train = list(sorted(set.intersection(*id_sets_train)))
|
25 |
random.shuffle(common_ids_train)
|
26 |
-
id_sets_test = [
|
|
|
|
|
|
|
27 |
common_ids_test = list(sorted(set.intersection(*id_sets_test)))
|
28 |
random.shuffle(common_ids_test)
|
29 |
|
30 |
slug_uhura_arc_easy_translated = "fair-forward/arc-easy-autotranslated"
|
31 |
tags_uhura_arc_easy_translated = {
|
32 |
-
standardize_tag(a.split("_")[0], macro=True): a
|
|
|
33 |
}
|
34 |
|
35 |
|
36 |
-
|
37 |
-
|
38 |
def add_choices(row):
|
39 |
row["choices"] = row["choices"]["text"]
|
40 |
return row
|
@@ -45,27 +51,37 @@ def load_uhura_arc_easy(language_bcp_47, nr):
|
|
45 |
ds = _load_dataset(slug_uhura_arc_easy, tags_uhura_arc_easy[language_bcp_47])
|
46 |
ds = ds.map(add_choices)
|
47 |
ds = ds.rename_column("answerKey", "answer")
|
48 |
-
train_ids = common_ids_train[nr:nr+3]
|
49 |
-
examples = ds["train"].filter(lambda x: x["id"] in train_ids)
|
50 |
task = ds["test"].filter(lambda x: x["id"] == common_ids_test[nr])[0]
|
51 |
-
return "masakhane/uhura-arc-easy",
|
52 |
if language_bcp_47 in tags_uhura_arc_easy_translated.keys():
|
53 |
-
ds = _load_dataset(
|
|
|
|
|
|
|
54 |
ds = ds.rename_column("answerKey", "answer")
|
55 |
-
train_ids = common_ids_train[nr:nr+3]
|
56 |
-
examples = ds["train"].filter(lambda x: x["id"] in train_ids)
|
57 |
-
# raise Exception(language_bcp_47)
|
58 |
task = ds["test"].filter(lambda x: x["id"] == common_ids_test[nr])[0]
|
59 |
-
return "fair-forward/arc-easy-autotranslated",
|
60 |
else:
|
|
|
61 |
return None, None, None
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
def translate_arc(languages):
|
64 |
human_translated = tags_uhura_arc_easy.keys()
|
65 |
untranslated = [
|
66 |
lang
|
67 |
for lang in languages["bcp_47"].values[:100]
|
68 |
-
if lang not in human_translated and lang in
|
69 |
]
|
70 |
n_samples = 10
|
71 |
train_ids = common_ids_train[:n_samples+3]
|
|
|
3 |
|
4 |
from langcodes import Language, standardize_tag
|
5 |
from rich import print
|
6 |
+
from models import translate_google, get_google_supported_languages
|
7 |
from tqdm import tqdm
|
8 |
+
from datasets import load_dataset
|
9 |
import asyncio
|
10 |
from tqdm.asyncio import tqdm_asyncio
|
11 |
import os
|
|
|
14 |
|
15 |
slug_uhura_arc_easy = "masakhane/uhura-arc-easy"
|
16 |
tags_uhura_arc_easy = {
|
17 |
+
standardize_tag(a.split("_")[0], macro=True): a
|
18 |
+
for a in _get_dataset_config_names(slug_uhura_arc_easy)
|
19 |
if not a.endswith("unmatched")
|
20 |
}
|
21 |
|
22 |
|
23 |
random.seed(42)
|
24 |
+
id_sets_train = [
|
25 |
+
set(_load_dataset(slug_uhura_arc_easy, tag, split="train")["id"])
|
26 |
+
for tag in tags_uhura_arc_easy.values()
|
27 |
+
]
|
28 |
common_ids_train = list(sorted(set.intersection(*id_sets_train)))
|
29 |
random.shuffle(common_ids_train)
|
30 |
+
id_sets_test = [
|
31 |
+
set(_load_dataset(slug_uhura_arc_easy, tag, split="test")["id"])
|
32 |
+
for tag in tags_uhura_arc_easy.values()
|
33 |
+
]
|
34 |
common_ids_test = list(sorted(set.intersection(*id_sets_test)))
|
35 |
random.shuffle(common_ids_test)
|
36 |
|
37 |
slug_uhura_arc_easy_translated = "fair-forward/arc-easy-autotranslated"
|
38 |
tags_uhura_arc_easy_translated = {
|
39 |
+
standardize_tag(a.split("_")[0], macro=True): a
|
40 |
+
for a in _get_dataset_config_names(slug_uhura_arc_easy_translated)
|
41 |
}
|
42 |
|
43 |
|
|
|
|
|
44 |
def add_choices(row):
|
45 |
row["choices"] = row["choices"]["text"]
|
46 |
return row
|
|
|
51 |
ds = _load_dataset(slug_uhura_arc_easy, tags_uhura_arc_easy[language_bcp_47])
|
52 |
ds = ds.map(add_choices)
|
53 |
ds = ds.rename_column("answerKey", "answer")
|
|
|
|
|
54 |
task = ds["test"].filter(lambda x: x["id"] == common_ids_test[nr])[0]
|
55 |
+
return "masakhane/uhura-arc-easy", task, "human"
|
56 |
if language_bcp_47 in tags_uhura_arc_easy_translated.keys():
|
57 |
+
ds = _load_dataset(
|
58 |
+
slug_uhura_arc_easy_translated,
|
59 |
+
tags_uhura_arc_easy_translated[language_bcp_47],
|
60 |
+
)
|
61 |
ds = ds.rename_column("answerKey", "answer")
|
|
|
|
|
|
|
62 |
task = ds["test"].filter(lambda x: x["id"] == common_ids_test[nr])[0]
|
63 |
+
return "fair-forward/arc-easy-autotranslated", task, "machine"
|
64 |
else:
|
65 |
+
# ARC does not support on-the-fly translation currently
|
66 |
return None, None, None
|
67 |
|
68 |
+
|
69 |
+
def load_uhura_arc_challenge(language_bcp_47, nr):
|
70 |
+
ds_name = "jlahd/uhura_arc_challenge"
|
71 |
+
if language_bcp_47 in _get_dataset_config_names(ds_name):
|
72 |
+
ds = _load_dataset(ds_name, language_bcp_47)
|
73 |
+
task = ds["test"][nr]
|
74 |
+
return ds_name, task
|
75 |
+
else:
|
76 |
+
return None, None, None
|
77 |
+
|
78 |
+
|
79 |
def translate_arc(languages):
|
80 |
human_translated = tags_uhura_arc_easy.keys()
|
81 |
untranslated = [
|
82 |
lang
|
83 |
for lang in languages["bcp_47"].values[:100]
|
84 |
+
if lang not in human_translated and lang in get_google_supported_languages()
|
85 |
]
|
86 |
n_samples = 10
|
87 |
train_ids = common_ids_train[:n_samples+3]
|
evals/datasets_/mgsm.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
import asyncio
|
2 |
import os
|
|
|
3 |
|
4 |
from datasets import Dataset, load_dataset
|
5 |
from datasets_.util import _get_dataset_config_names, _load_dataset
|
6 |
-
from langcodes import standardize_tag
|
7 |
-
from models import
|
|
|
8 |
from tqdm import tqdm
|
9 |
from tqdm.asyncio import tqdm_asyncio
|
10 |
|
@@ -38,19 +40,22 @@ def parse_number(i):
|
|
38 |
|
39 |
|
40 |
def load_mgsm(language_bcp_47, nr):
|
|
|
41 |
if language_bcp_47 in tags_mgsm.keys():
|
42 |
ds = _load_dataset(slug_mgsm, subset=tags_mgsm[language_bcp_47], split="test")
|
43 |
-
return slug_mgsm, ds[nr]
|
44 |
elif language_bcp_47 in tags_afrimgsm.keys():
|
45 |
ds = _load_dataset(
|
46 |
slug_afrimgsm, subset=tags_afrimgsm[language_bcp_47], split="test"
|
47 |
)
|
48 |
-
return slug_afrimgsm, ds[nr]
|
49 |
elif language_bcp_47 in tags_gsm_autotranslated.keys():
|
50 |
ds = _load_dataset(
|
51 |
-
slug_gsm_autotranslated,
|
|
|
|
|
52 |
)
|
53 |
-
return slug_gsm_autotranslated, ds[nr]
|
54 |
elif language_bcp_47 in tags_gsm8kx.keys():
|
55 |
row = _load_dataset(
|
56 |
slug_gsm8kx,
|
@@ -59,9 +64,9 @@ def load_mgsm(language_bcp_47, nr):
|
|
59 |
trust_remote_code=True,
|
60 |
)[nr]
|
61 |
row["answer_number"] = row["answer"].split("####")[1].strip()
|
62 |
-
return slug_gsm8kx, row
|
63 |
else:
|
64 |
-
return None, None
|
65 |
|
66 |
|
67 |
def translate_mgsm(languages):
|
@@ -69,7 +74,7 @@ def translate_mgsm(languages):
|
|
69 |
untranslated = [
|
70 |
lang
|
71 |
for lang in languages["bcp_47"].values[:100]
|
72 |
-
if lang not in human_translated and lang in
|
73 |
]
|
74 |
en = _load_dataset(slug_mgsm, subset=tags_mgsm["en"], split="test")
|
75 |
slug = "fair-forward/gsm-autotranslated"
|
|
|
1 |
import asyncio
|
2 |
import os
|
3 |
+
import random
|
4 |
|
5 |
from datasets import Dataset, load_dataset
|
6 |
from datasets_.util import _get_dataset_config_names, _load_dataset
|
7 |
+
from langcodes import Language, standardize_tag
|
8 |
+
from models import get_google_supported_languages, translate_google
|
9 |
+
from rich import print
|
10 |
from tqdm import tqdm
|
11 |
from tqdm.asyncio import tqdm_asyncio
|
12 |
|
|
|
40 |
|
41 |
|
42 |
def load_mgsm(language_bcp_47, nr):
|
43 |
+
print(f"Loading MGSM data for {language_bcp_47}...")
|
44 |
if language_bcp_47 in tags_mgsm.keys():
|
45 |
ds = _load_dataset(slug_mgsm, subset=tags_mgsm[language_bcp_47], split="test")
|
46 |
+
return slug_mgsm, ds[nr], "human"
|
47 |
elif language_bcp_47 in tags_afrimgsm.keys():
|
48 |
ds = _load_dataset(
|
49 |
slug_afrimgsm, subset=tags_afrimgsm[language_bcp_47], split="test"
|
50 |
)
|
51 |
+
return slug_afrimgsm, ds[nr], "human"
|
52 |
elif language_bcp_47 in tags_gsm_autotranslated.keys():
|
53 |
ds = _load_dataset(
|
54 |
+
slug_gsm_autotranslated,
|
55 |
+
subset=tags_gsm_autotranslated[language_bcp_47],
|
56 |
+
split="test",
|
57 |
)
|
58 |
+
return slug_gsm_autotranslated, ds[nr], "machine"
|
59 |
elif language_bcp_47 in tags_gsm8kx.keys():
|
60 |
row = _load_dataset(
|
61 |
slug_gsm8kx,
|
|
|
64 |
trust_remote_code=True,
|
65 |
)[nr]
|
66 |
row["answer_number"] = row["answer"].split("####")[1].strip()
|
67 |
+
return slug_gsm8kx, row, "human" # Assuming Eurolingua is human-translated
|
68 |
else:
|
69 |
+
return None, None, None
|
70 |
|
71 |
|
72 |
def translate_mgsm(languages):
|
|
|
74 |
untranslated = [
|
75 |
lang
|
76 |
for lang in languages["bcp_47"].values[:100]
|
77 |
+
if lang not in human_translated and lang in get_google_supported_languages()
|
78 |
]
|
79 |
en = _load_dataset(slug_mgsm, subset=tags_mgsm["en"], split="test")
|
80 |
slug = "fair-forward/gsm-autotranslated"
|
evals/datasets_/mmlu.py
CHANGED
@@ -6,7 +6,7 @@ from collections import Counter, defaultdict
|
|
6 |
from datasets import Dataset, load_dataset
|
7 |
from datasets_.util import _get_dataset_config_names, _load_dataset
|
8 |
from langcodes import Language, standardize_tag
|
9 |
-
from models import
|
10 |
from rich import print
|
11 |
from tqdm import tqdm
|
12 |
from tqdm.asyncio import tqdm_asyncio
|
@@ -150,26 +150,66 @@ categories = sorted(
|
|
150 |
)
|
151 |
|
152 |
|
153 |
-
def load_mmlu(language_bcp_47, nr):
|
|
|
154 |
category = categories[nr % len(categories)]
|
155 |
if language_bcp_47 in tags_afrimmlu.keys():
|
156 |
ds = _load_dataset("masakhane/afrimmlu", tags_afrimmlu[language_bcp_47])
|
157 |
ds = ds.map(parse_choices)
|
158 |
-
examples = ds["dev"].filter(lambda x: x["subject"] == category)
|
159 |
task = ds["test"].filter(lambda x: x["subject"] == category)[nr]
|
160 |
-
return "masakhane/afrimmlu",
|
161 |
elif language_bcp_47 in tags_global_mmlu.keys():
|
162 |
ds = _load_dataset("CohereForAI/Global-MMLU", tags_global_mmlu[language_bcp_47])
|
163 |
ds = ds.map(add_choices)
|
164 |
-
examples = ds["dev"].filter(lambda x: x["subject"] == category)
|
165 |
task = ds["test"].filter(lambda x: x["subject"] == category)[nr]
|
166 |
-
return "CohereForAI/Global-MMLU",
|
167 |
elif language_bcp_47 in tags_mmlu_autotranslated:
|
168 |
ds = _load_dataset("fair-forward/mmlu-autotranslated", language_bcp_47)
|
169 |
-
examples = ds["dev"].filter(lambda x: x["subject"] == category)
|
170 |
task = ds["test"].filter(lambda x: x["subject"] == category)[nr]
|
171 |
-
return "fair-forward/mmlu-autotranslated",
|
172 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
return None, None, None
|
174 |
|
175 |
|
@@ -178,7 +218,7 @@ def translate_mmlu(languages):
|
|
178 |
untranslated = [
|
179 |
lang
|
180 |
for lang in languages["bcp_47"].values[:100]
|
181 |
-
if lang not in human_translated and lang in
|
182 |
]
|
183 |
n_samples = 10
|
184 |
|
|
|
6 |
from datasets import Dataset, load_dataset
|
7 |
from datasets_.util import _get_dataset_config_names, _load_dataset
|
8 |
from langcodes import Language, standardize_tag
|
9 |
+
from models import get_google_supported_languages, translate_google
|
10 |
from rich import print
|
11 |
from tqdm import tqdm
|
12 |
from tqdm.asyncio import tqdm_asyncio
|
|
|
150 |
)
|
151 |
|
152 |
|
153 |
+
async def load_mmlu(language_bcp_47, nr):
|
154 |
+
print(f"Loading MMLU data for {language_bcp_47}...")
|
155 |
category = categories[nr % len(categories)]
|
156 |
if language_bcp_47 in tags_afrimmlu.keys():
|
157 |
ds = _load_dataset("masakhane/afrimmlu", tags_afrimmlu[language_bcp_47])
|
158 |
ds = ds.map(parse_choices)
|
|
|
159 |
task = ds["test"].filter(lambda x: x["subject"] == category)[nr]
|
160 |
+
return "masakhane/afrimmlu", task, "human"
|
161 |
elif language_bcp_47 in tags_global_mmlu.keys():
|
162 |
ds = _load_dataset("CohereForAI/Global-MMLU", tags_global_mmlu[language_bcp_47])
|
163 |
ds = ds.map(add_choices)
|
|
|
164 |
task = ds["test"].filter(lambda x: x["subject"] == category)[nr]
|
165 |
+
return "CohereForAI/Global-MMLU", task, "human"
|
166 |
elif language_bcp_47 in tags_mmlu_autotranslated:
|
167 |
ds = _load_dataset("fair-forward/mmlu-autotranslated", language_bcp_47)
|
|
|
168 |
task = ds["test"].filter(lambda x: x["subject"] == category)[nr]
|
169 |
+
return "fair-forward/mmlu-autotranslated", task, "machine"
|
170 |
else:
|
171 |
+
# Try on-the-fly translation for missing languages
|
172 |
+
return await load_mmlu_translated(language_bcp_47, nr)
|
173 |
+
|
174 |
+
|
175 |
+
async def load_mmlu_translated(language_bcp_47, nr):
|
176 |
+
"""
|
177 |
+
Load MMLU data with on-the-fly Google translation for languages
|
178 |
+
without native MMLU translations.
|
179 |
+
"""
|
180 |
+
# Check if Google Translate supports this language
|
181 |
+
supported_languages = get_google_supported_languages()
|
182 |
+
if language_bcp_47 not in supported_languages:
|
183 |
+
return None, None, None
|
184 |
+
|
185 |
+
print(f"π Translating MMLU data to {language_bcp_47} on-the-fly...")
|
186 |
+
|
187 |
+
try:
|
188 |
+
# Load English MMLU data
|
189 |
+
category = categories[nr % len(categories)]
|
190 |
+
ds = _load_dataset("masakhane/afrimmlu", "eng")
|
191 |
+
ds = ds.map(parse_choices)
|
192 |
+
task = ds["test"].filter(lambda x: x["subject"] == category)[nr]
|
193 |
+
|
194 |
+
# Translate question and choices
|
195 |
+
question_translated = await translate_google(task["question"], "en", language_bcp_47)
|
196 |
+
choices_translated = []
|
197 |
+
for choice in task["choices"]:
|
198 |
+
choice_translated = await translate_google(choice, "en", language_bcp_47)
|
199 |
+
choices_translated.append(choice_translated)
|
200 |
+
|
201 |
+
# Create translated task
|
202 |
+
translated_task = {
|
203 |
+
"question": question_translated,
|
204 |
+
"choices": choices_translated,
|
205 |
+
"answer": task["answer"], # Keep original answer index
|
206 |
+
"subject": task["subject"]
|
207 |
+
}
|
208 |
+
|
209 |
+
return f"mmlu-translated-{language_bcp_47}", translated_task, "machine"
|
210 |
+
|
211 |
+
except Exception as e:
|
212 |
+
print(f"β Translation failed for {language_bcp_47}: {e}")
|
213 |
return None, None, None
|
214 |
|
215 |
|
|
|
218 |
untranslated = [
|
219 |
lang
|
220 |
for lang in languages["bcp_47"].values[:100]
|
221 |
+
if lang not in human_translated and lang in get_google_supported_languages()
|
222 |
]
|
223 |
n_samples = 10
|
224 |
|
evals/datasets_/truthfulqa.py
CHANGED
@@ -9,7 +9,7 @@ from tqdm.asyncio import tqdm_asyncio
|
|
9 |
import os
|
10 |
|
11 |
from datasets import Dataset, load_dataset
|
12 |
-
from models import translate_google,
|
13 |
|
14 |
from datasets_.util import _get_dataset_config_names, _load_dataset
|
15 |
|
@@ -26,14 +26,51 @@ def add_choices(row):
|
|
26 |
return row
|
27 |
|
28 |
|
29 |
-
def load_truthfulqa(language_bcp_47, nr):
|
30 |
if language_bcp_47 in tags_uhura_truthfulqa.keys():
|
31 |
-
ds = _load_dataset(
|
|
|
|
|
32 |
ds = ds.map(add_choices)
|
33 |
-
examples = ds["train"]
|
34 |
task = ds["test"][nr]
|
35 |
-
return "masakhane/uhura-truthfulqa",
|
36 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
return None, None, None
|
38 |
|
39 |
|
@@ -43,7 +80,7 @@ def translate_truthfulqa(languages):
|
|
43 |
untranslated = [
|
44 |
lang
|
45 |
for lang in languages["bcp_47"].values[:100]
|
46 |
-
if lang not in human_translated and lang in
|
47 |
]
|
48 |
n_samples = 10
|
49 |
|
|
|
9 |
import os
|
10 |
|
11 |
from datasets import Dataset, load_dataset
|
12 |
+
from models import translate_google, get_google_supported_languages
|
13 |
|
14 |
from datasets_.util import _get_dataset_config_names, _load_dataset
|
15 |
|
|
|
26 |
return row
|
27 |
|
28 |
|
29 |
+
async def load_truthfulqa(language_bcp_47, nr):
|
30 |
if language_bcp_47 in tags_uhura_truthfulqa.keys():
|
31 |
+
ds = _load_dataset(
|
32 |
+
slug_uhura_truthfulqa, tags_uhura_truthfulqa[language_bcp_47]
|
33 |
+
)
|
34 |
ds = ds.map(add_choices)
|
|
|
35 |
task = ds["test"][nr]
|
36 |
+
return "masakhane/uhura-truthfulqa", task, "human"
|
37 |
else:
|
38 |
+
# Fallback to on-the-fly translation
|
39 |
+
return await load_truthfulqa_translated(language_bcp_47, nr)
|
40 |
+
|
41 |
+
async def load_truthfulqa_translated(language_bcp_47, nr):
|
42 |
+
"""
|
43 |
+
Load TruthfulQA data with on-the-fly Google translation.
|
44 |
+
"""
|
45 |
+
supported_languages = get_google_supported_languages()
|
46 |
+
if language_bcp_47 not in supported_languages:
|
47 |
+
return None, None, None
|
48 |
+
|
49 |
+
print(f"π Translating TruthfulQA data to {language_bcp_47} on-the-fly...")
|
50 |
+
|
51 |
+
try:
|
52 |
+
# Load English TruthfulQA data
|
53 |
+
ds = _load_dataset(slug_uhura_truthfulqa, tags_uhura_truthfulqa["en"])
|
54 |
+
ds = ds.map(add_choices)
|
55 |
+
task = ds["test"][nr]
|
56 |
+
|
57 |
+
# Translate question and choices
|
58 |
+
question_translated = await translate_google(task["question"], "en", language_bcp_47)
|
59 |
+
choices_translated = []
|
60 |
+
for choice in task["choices"]:
|
61 |
+
choice_translated = await translate_google(choice, "en", language_bcp_47)
|
62 |
+
choices_translated.append(choice_translated)
|
63 |
+
|
64 |
+
translated_task = {
|
65 |
+
"question": question_translated,
|
66 |
+
"choices": choices_translated,
|
67 |
+
"labels": task["labels"], # Keep original labels
|
68 |
+
}
|
69 |
+
|
70 |
+
return f"truthfulqa-translated-{language_bcp_47}", translated_task, "machine"
|
71 |
+
|
72 |
+
except Exception as e:
|
73 |
+
print(f"β Translation failed for {language_bcp_47}: {e}")
|
74 |
return None, None, None
|
75 |
|
76 |
|
|
|
80 |
untranslated = [
|
81 |
lang
|
82 |
for lang in languages["bcp_47"].values[:100]
|
83 |
+
if lang not in human_translated and lang in get_google_supported_languages()
|
84 |
]
|
85 |
n_samples = 10
|
86 |
|
evals/datasets_/util.py
CHANGED
@@ -12,3 +12,10 @@ def _get_dataset_config_names(dataset, **kwargs):
|
|
12 |
@cache
|
13 |
def _load_dataset(dataset, subset, **kwargs):
|
14 |
return load_dataset(dataset, subset, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
@cache
|
13 |
def _load_dataset(dataset, subset, **kwargs):
|
14 |
return load_dataset(dataset, subset, **kwargs)
|
15 |
+
|
16 |
+
# Cache individual dataset items to avoid reloading entire datasets
|
17 |
+
@cache
|
18 |
+
def _get_dataset_item(dataset, subset, split, index, **kwargs):
|
19 |
+
"""Load a single item from a dataset efficiently"""
|
20 |
+
ds = load_dataset(dataset, subset, split=split, **kwargs)
|
21 |
+
return ds[index] if index < len(ds) else None
|
evals/main.py
CHANGED
@@ -1,62 +1,164 @@
|
|
1 |
import asyncio
|
2 |
-
|
3 |
import pandas as pd
|
4 |
-
|
|
|
|
|
|
|
5 |
from models import models
|
6 |
from tasks import tasks
|
7 |
-
from
|
8 |
-
|
9 |
-
# ===== config =====
|
10 |
-
|
11 |
-
n_sentences = 10
|
12 |
-
|
13 |
-
# ===== run evaluation and aggregate results =====
|
14 |
|
|
|
15 |
|
16 |
async def evaluate():
|
17 |
# FIXME we should not need this for-loop, but it helps
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
print(f"running evaluations for {n_languages} languages")
|
20 |
old_results = pd.read_json("results.json")
|
|
|
|
|
21 |
old_models = pd.read_json("models.json")
|
22 |
# get all combinations of model, language and task
|
23 |
combis = [
|
24 |
(model, lang.bcp_47, task_name)
|
25 |
-
for model in
|
26 |
-
for lang in
|
27 |
for task_name, task in tasks.items()
|
28 |
-
if task_name in
|
29 |
]
|
30 |
# filter out combinations that have already been evaluated
|
31 |
combis = pd.DataFrame(combis, columns=["model", "bcp_47", "task"])
|
32 |
combis = combis.merge(old_results, on=["model", "bcp_47", "task"], how="left")
|
33 |
combis = combis[combis["metric"].isna()][["model", "bcp_47", "task"]]
|
34 |
-
# run evaluations
|
35 |
-
|
36 |
-
|
37 |
-
for
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
all_models = pd.concat([pd.DataFrame(models), old_models])
|
57 |
all_models = all_models.drop_duplicates(subset=["id"]).sort_values(by=["id"])
|
58 |
all_models.to_json("models.json", **args)
|
59 |
pd.DataFrame(languages).to_json("languages.json", **args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
|
62 |
if __name__ == "__main__":
|
|
|
1 |
import asyncio
|
|
|
2 |
import pandas as pd
|
3 |
+
import time
|
4 |
+
import os
|
5 |
+
from datetime import datetime, timedelta
|
6 |
+
from tqdm.asyncio import tqdm_asyncio
|
7 |
from models import models
|
8 |
from tasks import tasks
|
9 |
+
from languages import languages
|
10 |
+
import json
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
results = pd.DataFrame()
|
13 |
|
14 |
async def evaluate():
|
15 |
# FIXME we should not need this for-loop, but it helps
|
16 |
+
n_sentences = int(os.environ.get("N_SENTENCES", 15)) # Default 1 for quick testing
|
17 |
+
|
18 |
+
# Load models and languages
|
19 |
+
models_df = pd.DataFrame(models)
|
20 |
+
languages_df = pd.DataFrame(languages)
|
21 |
+
|
22 |
+
print(f"π Running full evaluation with {len(models_df)} models.")
|
23 |
+
start_time = time.time()
|
24 |
+
print(f"π Starting full evaluation at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
25 |
+
print(f"π Evaluating {n_sentences} sentences per task")
|
26 |
+
|
27 |
+
# Evaluate top languages by speakers (configurable via MAX_LANGUAGES env var)
|
28 |
+
max_languages = int(os.environ.get("MAX_LANGUAGES", 2)) # Default 2 for quick testing
|
29 |
+
top_languages = languages.head(max_languages) # Top N by population
|
30 |
+
print(f"π Evaluating top {len(top_languages)} languages by speakers (max: {max_languages})")
|
31 |
+
|
32 |
+
# For testing, just use all available languages up to max_languages
|
33 |
+
for n_languages in [min(max_languages, len(top_languages))]:
|
34 |
print(f"running evaluations for {n_languages} languages")
|
35 |
old_results = pd.read_json("results.json")
|
36 |
+
if old_results.empty:
|
37 |
+
old_results = pd.DataFrame(columns=["model", "bcp_47", "task", "metric", "origin", "score"])
|
38 |
old_models = pd.read_json("models.json")
|
39 |
# get all combinations of model, language and task
|
40 |
combis = [
|
41 |
(model, lang.bcp_47, task_name)
|
42 |
+
for model in models_df["id"]
|
43 |
+
for lang in top_languages.iloc[:n_languages].itertuples()
|
44 |
for task_name, task in tasks.items()
|
45 |
+
if task_name in models_df[models_df["id"] == model]["tasks"].iloc[0]
|
46 |
]
|
47 |
# filter out combinations that have already been evaluated
|
48 |
combis = pd.DataFrame(combis, columns=["model", "bcp_47", "task"])
|
49 |
combis = combis.merge(old_results, on=["model", "bcp_47", "task"], how="left")
|
50 |
combis = combis[combis["metric"].isna()][["model", "bcp_47", "task"]]
|
51 |
+
# run evaluations in batches to prevent HTTP pool exhaustion
|
52 |
+
all_tasks = []
|
53 |
+
for i in range(n_sentences):
|
54 |
+
for model, bcp_47, task_name in combis.itertuples(index=False):
|
55 |
+
# All tasks now use the same signature
|
56 |
+
all_tasks.append((tasks[task_name], model, bcp_47, i))
|
57 |
+
|
58 |
+
print(f"β³ Processing {len(all_tasks)} evaluation tasks in batches...")
|
59 |
+
|
60 |
+
batch_size = 50 # Process 50 tasks at a time
|
61 |
+
all_results = []
|
62 |
+
|
63 |
+
for i in range(0, len(all_tasks), batch_size):
|
64 |
+
batch = all_tasks[i:i+batch_size]
|
65 |
+
print(f"π¦ Processing batch {i//batch_size + 1}/{(len(all_tasks) + batch_size - 1)//batch_size} ({len(batch)} tasks)")
|
66 |
+
|
67 |
+
# Show what's being evaluated in this batch
|
68 |
+
batch_summary = {}
|
69 |
+
for task_data in batch:
|
70 |
+
task_func, model, bcp_47, sentence_nr = task_data
|
71 |
+
# Extract task name from function - handle both partial functions and regular functions
|
72 |
+
if hasattr(task_func, 'func'):
|
73 |
+
task_name = task_func.func.__name__.replace('_and_evaluate', '')
|
74 |
+
else:
|
75 |
+
task_name = task_func.__name__.replace('_and_evaluate', '')
|
76 |
+
|
77 |
+
if task_name not in batch_summary:
|
78 |
+
batch_summary[task_name] = set()
|
79 |
+
batch_summary[task_name].add(bcp_47)
|
80 |
+
|
81 |
+
for task_name, languages_set in batch_summary.items():
|
82 |
+
lang_list = ', '.join(sorted(languages_set))
|
83 |
+
print(f" π {task_name}: {lang_list}")
|
84 |
+
|
85 |
+
batch_coroutines = []
|
86 |
+
for task_data in batch:
|
87 |
+
task_func, model, bcp_47, sentence_nr = task_data
|
88 |
+
batch_coroutines.append(task_func(model, bcp_47, sentence_nr))
|
89 |
+
batch_results = await asyncio.gather(*batch_coroutines, return_exceptions=True)
|
90 |
+
all_results.extend(batch_results)
|
91 |
+
|
92 |
+
# Small delay between batches to avoid overwhelming the API
|
93 |
+
await asyncio.sleep(1)
|
94 |
+
|
95 |
+
results = all_results
|
96 |
+
# Filter out exceptions and flatten results
|
97 |
+
valid_results = []
|
98 |
+
exception_count = 0
|
99 |
+
for r in results:
|
100 |
+
if isinstance(r, Exception):
|
101 |
+
exception_count += 1
|
102 |
+
continue
|
103 |
+
if isinstance(r, list):
|
104 |
+
valid_results.extend(r)
|
105 |
+
else:
|
106 |
+
valid_results.append(r)
|
107 |
+
|
108 |
+
print(f"β οΈ Encountered {exception_count} API errors (model unavailable/rate limits)")
|
109 |
+
print(f"β
Successfully processed {len(valid_results)} evaluations")
|
110 |
+
|
111 |
+
# Save partial results even if some failed
|
112 |
+
if valid_results:
|
113 |
+
results = valid_results
|
114 |
+
args = dict(orient="records", indent=2, force_ascii=False)
|
115 |
+
|
116 |
+
# Aggregate results like main branch
|
117 |
+
results_df = pd.DataFrame(results)
|
118 |
+
if len(results_df) > 0:
|
119 |
+
results_df = (
|
120 |
+
results_df.groupby(["model", "bcp_47", "task", "metric", "origin"])
|
121 |
+
.agg({"score": "mean"})
|
122 |
+
.reset_index()
|
123 |
+
)
|
124 |
+
# Merge with old results
|
125 |
+
old_results = pd.read_json("results.json")
|
126 |
+
results_df = pd.concat([old_results, results_df])
|
127 |
+
results_df = results_df.sort_values(by=["model", "bcp_47", "task", "metric"])
|
128 |
+
results_df.to_json("results.json", **args)
|
129 |
+
print(f"πΎ Saved {len(results_df)} aggregated results to results.json")
|
130 |
+
else:
|
131 |
+
print("β οΈ No valid results to aggregate")
|
132 |
+
else:
|
133 |
+
print("β οΈ No valid results to save - all API calls failed")
|
134 |
+
|
135 |
+
# Save up-to-date info on models and languages (like main branch)
|
136 |
all_models = pd.concat([pd.DataFrame(models), old_models])
|
137 |
all_models = all_models.drop_duplicates(subset=["id"]).sort_values(by=["id"])
|
138 |
all_models.to_json("models.json", **args)
|
139 |
pd.DataFrame(languages).to_json("languages.json", **args)
|
140 |
+
|
141 |
+
# Continue with next batch even if this one had errors
|
142 |
+
|
143 |
+
# Time estimation
|
144 |
+
elapsed = time.time() - start_time
|
145 |
+
elapsed_str = str(timedelta(seconds=int(elapsed)))
|
146 |
+
if n_languages < max_languages:
|
147 |
+
remaining_batches = (max_languages - n_languages) // 10
|
148 |
+
batch_count = max(1, n_languages // 10) # Avoid division by zero
|
149 |
+
estimated_remaining = elapsed * remaining_batches / batch_count
|
150 |
+
eta = datetime.now() + timedelta(seconds=estimated_remaining)
|
151 |
+
print(f"β±οΈ Batch completed in {elapsed_str}. ETA for full run: {eta.strftime('%H:%M:%S')}")
|
152 |
+
else:
|
153 |
+
print(f"β
Full evaluation completed in {elapsed_str}")
|
154 |
+
print(f"π Finished at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
155 |
+
|
156 |
+
# Save results locally
|
157 |
+
with open("results.json", "w") as f:
|
158 |
+
json.dump(results, f, indent=2)
|
159 |
+
print(f"πΎ Results saved to results.json")
|
160 |
+
|
161 |
+
return results
|
162 |
|
163 |
|
164 |
if __name__ == "__main__":
|
evals/main_gcs.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import pandas as pd
|
3 |
+
import time
|
4 |
+
import os
|
5 |
+
from datetime import datetime, timedelta
|
6 |
+
from tqdm.asyncio import tqdm_asyncio
|
7 |
+
from models import models
|
8 |
+
from tasks import tasks
|
9 |
+
from languages import languages
|
10 |
+
import json
|
11 |
+
|
12 |
+
# Google Cloud Storage imports
|
13 |
+
try:
|
14 |
+
from google.cloud import storage
|
15 |
+
GCS_AVAILABLE = True
|
16 |
+
print("β
Google Cloud Storage available")
|
17 |
+
except ImportError:
|
18 |
+
GCS_AVAILABLE = False
|
19 |
+
print("β Google Cloud Storage not available - install with: pip install google-cloud-storage")
|
20 |
+
|
21 |
+
async def save_results_to_gcs(results, bucket_name="ai-language-eval-results"):
|
22 |
+
"""Save results to Google Cloud Storage"""
|
23 |
+
if not GCS_AVAILABLE:
|
24 |
+
print("β Google Cloud Storage not available")
|
25 |
+
return
|
26 |
+
|
27 |
+
try:
|
28 |
+
storage_client = storage.Client()
|
29 |
+
bucket = storage_client.bucket(bucket_name)
|
30 |
+
|
31 |
+
# Create bucket if it doesn't exist
|
32 |
+
if not bucket.exists():
|
33 |
+
bucket = storage_client.create_bucket(bucket_name, location="us-central1")
|
34 |
+
print(f"π¦ Created bucket: {bucket_name}")
|
35 |
+
|
36 |
+
# Save results with timestamp
|
37 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
38 |
+
blob_name = f"results_{timestamp}.json"
|
39 |
+
blob = bucket.blob(blob_name)
|
40 |
+
|
41 |
+
# Convert results to JSON and upload
|
42 |
+
results_json = json.dumps(results, indent=2)
|
43 |
+
blob.upload_from_string(results_json, content_type='application/json')
|
44 |
+
|
45 |
+
print(f"πΎ Results saved to GCS: gs://{bucket_name}/{blob_name}")
|
46 |
+
print(f"π Download with: gsutil cp gs://{bucket_name}/{blob_name} ./")
|
47 |
+
|
48 |
+
# Also save latest results
|
49 |
+
latest_blob = bucket.blob("results_latest.json")
|
50 |
+
latest_blob.upload_from_string(results_json, content_type='application/json')
|
51 |
+
print(f"πΎ Latest results: gs://{bucket_name}/results_latest.json")
|
52 |
+
|
53 |
+
except Exception as e:
|
54 |
+
print(f"β Failed to save to GCS: {e}")
|
55 |
+
print("πΎ Results saved locally to results.json")
|
56 |
+
|
57 |
+
results = pd.DataFrame()
|
58 |
+
|
59 |
+
async def evaluate():
|
60 |
+
# FIXME we should not need this for-loop, but it helps
|
61 |
+
n_sentences = int(os.environ.get("N_SENTENCES", 1)) # Default 1 for quick testing
|
62 |
+
|
63 |
+
# Load models and languages
|
64 |
+
models_df = pd.DataFrame(models)
|
65 |
+
languages_df = pd.DataFrame(languages)
|
66 |
+
|
67 |
+
print(f"π Running full evaluation with {len(models_df)} models.")
|
68 |
+
start_time = time.time()
|
69 |
+
print(f"π Starting full evaluation at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
70 |
+
print(f"π Evaluating {n_sentences} sentences per task")
|
71 |
+
|
72 |
+
# Evaluate top languages by speakers (configurable via MAX_LANGUAGES env var)
|
73 |
+
max_languages = int(os.environ.get("MAX_LANGUAGES", 2)) # Default 2 for quick testing
|
74 |
+
top_languages = languages.head(max_languages) # Top N by population
|
75 |
+
print(f"π Evaluating top {len(top_languages)} languages by speakers (max: {max_languages})")
|
76 |
+
|
77 |
+
# For testing, just use all available languages up to max_languages
|
78 |
+
for n_languages in [min(max_languages, len(top_languages))]:
|
79 |
+
print(f"running evaluations for {n_languages} languages")
|
80 |
+
old_results = pd.read_json("results.json")
|
81 |
+
if old_results.empty:
|
82 |
+
old_results = pd.DataFrame(columns=["model", "bcp_47", "task", "metric", "origin", "score"])
|
83 |
+
old_models = pd.read_json("models.json")
|
84 |
+
# get all combinations of model, language and task
|
85 |
+
combis = [
|
86 |
+
(model, lang.bcp_47, task_name)
|
87 |
+
for model in models_df["id"]
|
88 |
+
for lang in top_languages.iloc[:n_languages].itertuples()
|
89 |
+
for task_name, task in tasks.items()
|
90 |
+
if task_name in models_df[models_df["id"] == model]["tasks"].iloc[0]
|
91 |
+
]
|
92 |
+
# filter out combinations that have already been evaluated
|
93 |
+
combis = pd.DataFrame(combis, columns=["model", "bcp_47", "task"])
|
94 |
+
combis = combis.merge(old_results, on=["model", "bcp_47", "task"], how="left")
|
95 |
+
combis = combis[combis["metric"].isna()][["model", "bcp_47", "task"]]
|
96 |
+
# run evaluations in batches to prevent HTTP pool exhaustion
|
97 |
+
all_tasks = []
|
98 |
+
for i in range(n_sentences):
|
99 |
+
for model, bcp_47, task_name in combis.itertuples(index=False):
|
100 |
+
# All tasks now use the same signature
|
101 |
+
all_tasks.append((tasks[task_name], model, bcp_47, i))
|
102 |
+
|
103 |
+
print(f"β³ Processing {len(all_tasks)} evaluation tasks in batches...")
|
104 |
+
|
105 |
+
batch_size = 50 # Process 50 tasks at a time
|
106 |
+
all_results = []
|
107 |
+
|
108 |
+
for i in range(0, len(all_tasks), batch_size):
|
109 |
+
batch = all_tasks[i:i+batch_size]
|
110 |
+
print(f"π¦ Processing batch {i//batch_size + 1}/{(len(all_tasks) + batch_size - 1)//batch_size} ({len(batch)} tasks)")
|
111 |
+
|
112 |
+
# Show what's being evaluated in this batch
|
113 |
+
batch_summary = {}
|
114 |
+
for task_data in batch:
|
115 |
+
task_func, model, bcp_47, sentence_nr = task_data
|
116 |
+
# Extract task name from function - handle both partial functions and regular functions
|
117 |
+
if hasattr(task_func, 'func'):
|
118 |
+
task_name = task_func.func.__name__.replace('_and_evaluate', '')
|
119 |
+
else:
|
120 |
+
task_name = task_func.__name__.replace('_and_evaluate', '')
|
121 |
+
|
122 |
+
if task_name not in batch_summary:
|
123 |
+
batch_summary[task_name] = set()
|
124 |
+
batch_summary[task_name].add(bcp_47)
|
125 |
+
|
126 |
+
for task_name, languages_set in batch_summary.items():
|
127 |
+
lang_list = ', '.join(sorted(languages_set))
|
128 |
+
print(f" π {task_name}: {lang_list}")
|
129 |
+
|
130 |
+
batch_coroutines = []
|
131 |
+
for task_data in batch:
|
132 |
+
task_func, model, bcp_47, sentence_nr = task_data
|
133 |
+
batch_coroutines.append(task_func(model, bcp_47, sentence_nr))
|
134 |
+
batch_results = await asyncio.gather(*batch_coroutines, return_exceptions=True)
|
135 |
+
all_results.extend(batch_results)
|
136 |
+
|
137 |
+
# Small delay between batches to avoid overwhelming the API
|
138 |
+
await asyncio.sleep(1)
|
139 |
+
|
140 |
+
results = all_results
|
141 |
+
# Filter out exceptions and flatten results
|
142 |
+
valid_results = []
|
143 |
+
exception_count = 0
|
144 |
+
for r in results:
|
145 |
+
if isinstance(r, Exception):
|
146 |
+
exception_count += 1
|
147 |
+
continue
|
148 |
+
if isinstance(r, list):
|
149 |
+
valid_results.extend(r)
|
150 |
+
else:
|
151 |
+
valid_results.append(r)
|
152 |
+
|
153 |
+
print(f"β οΈ Encountered {exception_count} API errors (model unavailable/rate limits)")
|
154 |
+
print(f"β
Successfully processed {len(valid_results)} evaluations")
|
155 |
+
|
156 |
+
# Save partial results even if some failed
|
157 |
+
if valid_results:
|
158 |
+
results = valid_results
|
159 |
+
args = dict(orient="records", indent=2, force_ascii=False)
|
160 |
+
|
161 |
+
# Aggregate results like main branch
|
162 |
+
results_df = pd.DataFrame(results)
|
163 |
+
if len(results_df) > 0:
|
164 |
+
results_df = (
|
165 |
+
results_df.groupby(["model", "bcp_47", "task", "metric", "origin"])
|
166 |
+
.agg({"score": "mean"})
|
167 |
+
.reset_index()
|
168 |
+
)
|
169 |
+
# Merge with old results
|
170 |
+
old_results = pd.read_json("results.json")
|
171 |
+
results_df = pd.concat([old_results, results_df])
|
172 |
+
results_df = results_df.sort_values(by=["model", "bcp_47", "task", "metric"])
|
173 |
+
results_df.to_json("results.json", **args)
|
174 |
+
print(f"πΎ Saved {len(results_df)} aggregated results to results.json")
|
175 |
+
else:
|
176 |
+
print("β οΈ No valid results to aggregate")
|
177 |
+
else:
|
178 |
+
print("β οΈ No valid results to save - all API calls failed")
|
179 |
+
|
180 |
+
# Save up-to-date info on models and languages (like main branch)
|
181 |
+
all_models = pd.concat([pd.DataFrame(models), old_models])
|
182 |
+
all_models = all_models.drop_duplicates(subset=["id"]).sort_values(by=["id"])
|
183 |
+
all_models.to_json("models.json", **args)
|
184 |
+
pd.DataFrame(languages).to_json("languages.json", **args)
|
185 |
+
|
186 |
+
# Continue with next batch even if this one had errors
|
187 |
+
|
188 |
+
# Time estimation
|
189 |
+
elapsed = time.time() - start_time
|
190 |
+
elapsed_str = str(timedelta(seconds=int(elapsed)))
|
191 |
+
if n_languages < max_languages:
|
192 |
+
remaining_batches = (max_languages - n_languages) // 10
|
193 |
+
batch_count = max(1, n_languages // 10) # Avoid division by zero
|
194 |
+
estimated_remaining = elapsed * remaining_batches / batch_count
|
195 |
+
eta = datetime.now() + timedelta(seconds=estimated_remaining)
|
196 |
+
print(f"β±οΈ Batch completed in {elapsed_str}. ETA for full run: {eta.strftime('%H:%M:%S')}")
|
197 |
+
else:
|
198 |
+
print(f"β
Full evaluation completed in {elapsed_str}")
|
199 |
+
print(f"π Finished at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
|
200 |
+
|
201 |
+
# Save results locally
|
202 |
+
with open("results.json", "w") as f:
|
203 |
+
json.dump(results, f, indent=2)
|
204 |
+
print(f"πΎ Results saved to results.json")
|
205 |
+
|
206 |
+
# Save to Google Cloud Storage
|
207 |
+
await save_results_to_gcs(results)
|
208 |
+
|
209 |
+
return results
|
210 |
+
|
211 |
+
|
212 |
+
if __name__ == "__main__":
|
213 |
+
results = asyncio.run(evaluate())
|
evals/models.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import json
|
2 |
import re
|
3 |
from collections import defaultdict
|
@@ -211,26 +212,55 @@ google_rate_limit = AsyncLimiter(max_rate=10, time_period=1)
|
|
211 |
|
212 |
@cache
|
213 |
async def complete(**kwargs) -> str | None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
async with openrouter_rate_limit:
|
215 |
try:
|
216 |
-
response = await
|
|
|
|
|
|
|
217 |
except BadRequestError as e:
|
218 |
if "filtered" in e.message:
|
219 |
return None
|
220 |
raise e
|
|
|
|
|
|
|
221 |
if not response.choices:
|
222 |
raise Exception(response)
|
223 |
return response.choices[0].message.content.strip()
|
224 |
|
225 |
|
226 |
-
translate_client =
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
|
230 |
@cache
|
231 |
async def translate_google(text, source_language, target_language):
|
|
|
232 |
async with google_rate_limit:
|
233 |
-
response =
|
234 |
text, source_language=source_language, target_language=target_language
|
235 |
)
|
236 |
return response["translatedText"]
|
@@ -294,12 +324,14 @@ def get_hf_metadata(row):
|
|
294 |
return empty
|
295 |
try:
|
296 |
info = api.model_info(id)
|
297 |
-
license =
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
|
|
|
|
303 |
return {
|
304 |
"hf_id": info.id,
|
305 |
"creation_date": info.created_at,
|
@@ -329,8 +361,30 @@ def load_models(date: date):
|
|
329 |
+ get_current_popular_models(date.today())[:10]
|
330 |
)
|
331 |
popular_models = [m["slug"] for m in popular_models]
|
332 |
-
|
333 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
or_metadata = models["id"].apply(get_or_metadata)
|
335 |
hf_metadata = or_metadata.apply(get_hf_metadata)
|
336 |
creation_date_hf = pd.to_datetime(hf_metadata.str["creation_date"]).dt.date
|
@@ -350,7 +404,8 @@ def load_models(date: date):
|
|
350 |
license=hf_metadata.str["license"],
|
351 |
creation_date=creation_date_hf.combine_first(creation_date_or),
|
352 |
)
|
353 |
-
#
|
|
|
354 |
models["tasks"] = [
|
355 |
["translation_from", "translation_to", "classification", "mmlu", "arc", "truthfulqa", "mgsm"]
|
356 |
] * len(models)
|
|
|
1 |
+
import asyncio
|
2 |
import json
|
3 |
import re
|
4 |
from collections import defaultdict
|
|
|
212 |
|
213 |
@cache
|
214 |
async def complete(**kwargs) -> str | None:
|
215 |
+
# Add longer timeout for slower, premium, or reasoning-focused models
|
216 |
+
model_id = kwargs.get('model', '')
|
217 |
+
slow_model_keywords = [
|
218 |
+
'claude-3.5', 'claude-3.7', 'claude-4', 'sonnet-4', # Claude
|
219 |
+
'gpt-4', 'o1', 'o3', # OpenAI
|
220 |
+
'gemini-2.5', 'gemini-pro', # Google
|
221 |
+
'llama-4', # Meta
|
222 |
+
'reasoning', 'thinking' # General
|
223 |
+
]
|
224 |
+
timeout = 120 if any(keyword in model_id for keyword in slow_model_keywords) else 60
|
225 |
+
|
226 |
async with openrouter_rate_limit:
|
227 |
try:
|
228 |
+
response = await asyncio.wait_for(
|
229 |
+
client.chat.completions.create(**kwargs),
|
230 |
+
timeout=timeout
|
231 |
+
)
|
232 |
except BadRequestError as e:
|
233 |
if "filtered" in e.message:
|
234 |
return None
|
235 |
raise e
|
236 |
+
except asyncio.TimeoutError:
|
237 |
+
print(f"β° Timeout after {timeout}s for model {model}")
|
238 |
+
return None
|
239 |
if not response.choices:
|
240 |
raise Exception(response)
|
241 |
return response.choices[0].message.content.strip()
|
242 |
|
243 |
|
244 |
+
translate_client = None
|
245 |
+
|
246 |
+
|
247 |
+
def get_google_translate_client():
|
248 |
+
global translate_client
|
249 |
+
if translate_client is None:
|
250 |
+
translate_client = translate.Client()
|
251 |
+
return translate_client
|
252 |
+
|
253 |
+
|
254 |
+
def get_google_supported_languages():
|
255 |
+
client = get_google_translate_client()
|
256 |
+
return [l["language"] for l in client.get_languages()]
|
257 |
|
258 |
|
259 |
@cache
|
260 |
async def translate_google(text, source_language, target_language):
|
261 |
+
client = get_google_translate_client()
|
262 |
async with google_rate_limit:
|
263 |
+
response = client.translate(
|
264 |
text, source_language=source_language, target_language=target_language
|
265 |
)
|
266 |
return response["translatedText"]
|
|
|
324 |
return empty
|
325 |
try:
|
326 |
info = api.model_info(id)
|
327 |
+
license = ""
|
328 |
+
if info.card_data and hasattr(info.card_data, 'license') and info.card_data.license:
|
329 |
+
license = (
|
330 |
+
info.card_data.license
|
331 |
+
.replace("-", " ")
|
332 |
+
.replace("mit", "MIT")
|
333 |
+
.title()
|
334 |
+
)
|
335 |
return {
|
336 |
"hf_id": info.id,
|
337 |
"creation_date": info.created_at,
|
|
|
361 |
+ get_current_popular_models(date.today())[:10]
|
362 |
)
|
363 |
popular_models = [m["slug"] for m in popular_models]
|
364 |
+
all_model_candidates = set(important_models + popular_models) - set(blocklist)
|
365 |
+
|
366 |
+
# Validate models exist on OpenRouter before including them
|
367 |
+
print(f"π Validating {len(all_model_candidates)} model candidates...")
|
368 |
+
valid_models = []
|
369 |
+
invalid_models = []
|
370 |
+
|
371 |
+
for model_id in all_model_candidates:
|
372 |
+
metadata = get_or_metadata(model_id)
|
373 |
+
if metadata is not None:
|
374 |
+
valid_models.append(model_id)
|
375 |
+
else:
|
376 |
+
invalid_models.append(model_id)
|
377 |
+
|
378 |
+
if invalid_models:
|
379 |
+
print(f"β οΈ Excluded {len(invalid_models)} invalid models:")
|
380 |
+
for model in sorted(invalid_models)[:5]: # Show first 5
|
381 |
+
print(f" - {model}")
|
382 |
+
if len(invalid_models) > 5:
|
383 |
+
print(f" ... and {len(invalid_models) - 5} more")
|
384 |
+
|
385 |
+
print(f"β
Using {len(valid_models)} valid models for evaluation")
|
386 |
+
|
387 |
+
models = pd.DataFrame(sorted(valid_models), columns=["id"])
|
388 |
or_metadata = models["id"].apply(get_or_metadata)
|
389 |
hf_metadata = or_metadata.apply(get_hf_metadata)
|
390 |
creation_date_hf = pd.to_datetime(hf_metadata.str["creation_date"]).dt.date
|
|
|
404 |
license=hf_metadata.str["license"],
|
405 |
creation_date=creation_date_hf.combine_first(creation_date_or),
|
406 |
)
|
407 |
+
# Filter out expensive models to keep costs reasonable
|
408 |
+
models = models[models["cost"] <= 20.0].reset_index(drop=True)
|
409 |
models["tasks"] = [
|
410 |
["translation_from", "translation_to", "classification", "mmlu", "arc", "truthfulqa", "mgsm"]
|
411 |
] * len(models)
|
evals/tasks.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import random
|
2 |
from functools import partial
|
3 |
from textwrap import dedent
|
@@ -13,7 +14,7 @@ from datasets_.truthfulqa import load_truthfulqa
|
|
13 |
from google.cloud import translate_v2 as translate
|
14 |
from langcodes import closest_supported_match
|
15 |
from languages import languages, script_name
|
16 |
-
from models import complete, transcribe, translate_google
|
17 |
|
18 |
bleu = evaluate.load("bleu")
|
19 |
chrf = evaluate.load("chrf")
|
@@ -27,9 +28,6 @@ target_languages = languages[languages["in_benchmark"]].sample(
|
|
27 |
frac=1, weights="speakers", replace=True, random_state=42
|
28 |
)
|
29 |
|
30 |
-
translate_client = translate.Client()
|
31 |
-
supported_languages = [l["language"] for l in translate_client.get_languages()]
|
32 |
-
|
33 |
|
34 |
async def translate_and_evaluate(model, bcp_47, sentence_nr, mode="from"):
|
35 |
original_language = languages[languages["bcp_47"] == bcp_47].iloc[0]
|
@@ -48,6 +46,7 @@ async def translate_and_evaluate(model, bcp_47, sentence_nr, mode="from"):
|
|
48 |
target_sentence = flores_sentences(target_language)["text"][sentence_nr].strip()
|
49 |
script = script_name(target_language.flores_path.split("_")[1])
|
50 |
if model == "google/translate-v2":
|
|
|
51 |
original_language = closest_supported_match(
|
52 |
original_language, supported_languages
|
53 |
)
|
@@ -91,6 +90,7 @@ async def translate_and_evaluate(model, bcp_47, sentence_nr, mode="from"):
|
|
91 |
"task": f"translation_{mode}",
|
92 |
"metric": metric,
|
93 |
"score": score,
|
|
|
94 |
"sentence_nr": sentence_nr,
|
95 |
}
|
96 |
for metric, score in (
|
@@ -112,38 +112,21 @@ async def classify_and_evaluate(model, bcp_47, nr):
|
|
112 |
)
|
113 |
top_topics = paragraphs.value_counts("topic").head(5).index
|
114 |
paragraphs = paragraphs[paragraphs["topic"].isin(top_topics)]
|
115 |
-
|
116 |
-
[
|
117 |
-
paragraphs[paragraphs["topic"] == t].sample(n=1, random_state=42)
|
118 |
-
for t in top_topics
|
119 |
-
]
|
120 |
-
).sample(frac=1, random_state=nr)
|
121 |
-
test_paragraphs = paragraphs[~paragraphs["url"].isin(examples["url"])].sample(
|
122 |
-
frac=1, random_state=42
|
123 |
-
)
|
124 |
-
test_paragraph = test_paragraphs.iloc[nr]
|
125 |
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
messages = []
|
130 |
-
for example in examples.itertuples():
|
131 |
-
messages += [
|
132 |
-
{"role": "user", "content": format_prompt(example.text)},
|
133 |
-
{"role": "assistant", "content": example.topic},
|
134 |
-
]
|
135 |
# some models have poor tokenization for some languages, and the prompt for this task is relatively long, so it sometimes exceeds the context window
|
136 |
# this is not just to blame on the context window but mostly on the model's tokenization, so we assign 0 accuracy in this case
|
137 |
try:
|
138 |
pred = await complete(
|
139 |
model=model,
|
140 |
-
messages=[
|
141 |
-
*messages,
|
142 |
-
{
|
143 |
-
"role": "user",
|
144 |
-
"content": format_prompt(test_paragraph.text),
|
145 |
-
},
|
146 |
-
],
|
147 |
temperature=0,
|
148 |
max_tokens=30,
|
149 |
)
|
@@ -170,6 +153,7 @@ async def classify_and_evaluate(model, bcp_47, nr):
|
|
170 |
"task": "classification",
|
171 |
"metric": "accuracy",
|
172 |
"score": acc,
|
|
|
173 |
"sentence_nr": nr,
|
174 |
}
|
175 |
]
|
@@ -234,30 +218,36 @@ def format_multiple_choice(item):
|
|
234 |
C: {item["choices"][2]}
|
235 |
D: {item["choices"][3]}
|
236 |
|
237 |
-
|
238 |
|
239 |
|
240 |
async def mmlu_and_evaluate(model, language_bcp_47, nr):
|
241 |
-
ds_name,
|
242 |
if not task:
|
243 |
return []
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
try:
|
253 |
response = await complete(
|
254 |
model=model,
|
255 |
messages=messages,
|
256 |
temperature=0,
|
257 |
-
max_tokens=
|
258 |
)
|
259 |
-
if response:
|
260 |
-
|
|
|
261 |
else:
|
262 |
acc = 0
|
263 |
except Exception as e:
|
@@ -265,6 +255,7 @@ async def mmlu_and_evaluate(model, language_bcp_47, nr):
|
|
265 |
acc = 0
|
266 |
else:
|
267 |
raise e
|
|
|
268 |
return [
|
269 |
{
|
270 |
"model": model,
|
@@ -272,32 +263,39 @@ async def mmlu_and_evaluate(model, language_bcp_47, nr):
|
|
272 |
"task": "mmlu",
|
273 |
"metric": "accuracy",
|
274 |
"score": acc,
|
|
|
275 |
"sentence_nr": nr,
|
276 |
}
|
277 |
]
|
278 |
|
279 |
|
280 |
async def arc_and_evaluate(model, language_bcp_47, nr):
|
281 |
-
ds_name,
|
282 |
if not task:
|
283 |
return []
|
284 |
|
285 |
-
messages = [
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
|
|
|
|
|
|
|
|
|
|
292 |
try:
|
293 |
response = await complete(
|
294 |
model=model,
|
295 |
messages=messages,
|
296 |
temperature=0,
|
297 |
-
max_tokens=
|
298 |
)
|
299 |
-
if response:
|
300 |
-
|
|
|
301 |
else:
|
302 |
acc = 0
|
303 |
except Exception as e:
|
@@ -312,6 +310,7 @@ async def arc_and_evaluate(model, language_bcp_47, nr):
|
|
312 |
"task": "arc",
|
313 |
"metric": "accuracy",
|
314 |
"score": acc,
|
|
|
315 |
"sentence_nr": nr,
|
316 |
}
|
317 |
]
|
@@ -337,28 +336,40 @@ def format_multiple_choice_truthfulqa(item):
|
|
337 |
|
338 |
|
339 |
async def truthfulqa_and_evaluate(model, language_bcp_47, nr):
|
340 |
-
ds_name,
|
341 |
if not task:
|
342 |
return []
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
messages
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
try:
|
354 |
response = await complete(
|
355 |
model=model,
|
356 |
messages=messages,
|
357 |
temperature=0,
|
358 |
-
max_tokens=
|
359 |
)
|
360 |
-
if response:
|
361 |
-
|
|
|
362 |
else:
|
363 |
acc = 0
|
364 |
except Exception as e:
|
@@ -373,30 +384,36 @@ async def truthfulqa_and_evaluate(model, language_bcp_47, nr):
|
|
373 |
"task": "truthfulqa",
|
374 |
"metric": "accuracy",
|
375 |
"score": acc,
|
|
|
376 |
"sentence_nr": nr,
|
377 |
}
|
378 |
]
|
379 |
|
380 |
|
381 |
async def mgsm_and_evaluate(model, language_bcp_47, nr):
|
382 |
-
|
383 |
-
Solve the math problem. Use reasoning, and finally give the answer as a number.
|
384 |
-
Response format: <reasoning> #### <number>
|
385 |
-
"""
|
386 |
-
system_prompt = dedent(system_prompt).strip()
|
387 |
-
ds_slug, question = load_mgsm(language_bcp_47, nr)
|
388 |
if not question:
|
389 |
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
390 |
response = await complete(
|
391 |
model=model,
|
392 |
-
messages=
|
393 |
-
{"role": "system", "content": system_prompt},
|
394 |
-
{"role": "user", "content": question["question"]},
|
395 |
-
],
|
396 |
temperature=0,
|
397 |
max_tokens=1024,
|
398 |
)
|
399 |
-
if response and
|
400 |
number = response.split("####")[1].strip()
|
401 |
accuracy = int(parse_number(number) == parse_number(question["answer_number"]))
|
402 |
else:
|
@@ -409,6 +426,7 @@ async def mgsm_and_evaluate(model, language_bcp_47, nr):
|
|
409 |
"task": "mgsm",
|
410 |
"metric": "accuracy",
|
411 |
"score": accuracy,
|
|
|
412 |
"sentence_nr": nr,
|
413 |
}
|
414 |
]
|
@@ -449,10 +467,8 @@ tasks = {
|
|
449 |
"translation_from": partial(translate_and_evaluate, mode="from"),
|
450 |
"translation_to": partial(translate_and_evaluate, mode="to"),
|
451 |
"classification": classify_and_evaluate,
|
452 |
-
# "mlm": mlm_and_evaluate,
|
453 |
"mmlu": mmlu_and_evaluate,
|
454 |
"arc": arc_and_evaluate,
|
455 |
"truthfulqa": truthfulqa_and_evaluate,
|
456 |
"mgsm": mgsm_and_evaluate,
|
457 |
-
# "asr": transcribe_and_evaluate,
|
458 |
}
|
|
|
1 |
+
import asyncio
|
2 |
import random
|
3 |
from functools import partial
|
4 |
from textwrap import dedent
|
|
|
14 |
from google.cloud import translate_v2 as translate
|
15 |
from langcodes import closest_supported_match
|
16 |
from languages import languages, script_name
|
17 |
+
from models import complete, transcribe, translate_google, get_google_supported_languages
|
18 |
|
19 |
bleu = evaluate.load("bleu")
|
20 |
chrf = evaluate.load("chrf")
|
|
|
28 |
frac=1, weights="speakers", replace=True, random_state=42
|
29 |
)
|
30 |
|
|
|
|
|
|
|
31 |
|
32 |
async def translate_and_evaluate(model, bcp_47, sentence_nr, mode="from"):
|
33 |
original_language = languages[languages["bcp_47"] == bcp_47].iloc[0]
|
|
|
46 |
target_sentence = flores_sentences(target_language)["text"][sentence_nr].strip()
|
47 |
script = script_name(target_language.flores_path.split("_")[1])
|
48 |
if model == "google/translate-v2":
|
49 |
+
supported_languages = get_google_supported_languages()
|
50 |
original_language = closest_supported_match(
|
51 |
original_language, supported_languages
|
52 |
)
|
|
|
90 |
"task": f"translation_{mode}",
|
91 |
"metric": metric,
|
92 |
"score": score,
|
93 |
+
"origin": "human", # FLORES+ is human-translated
|
94 |
"sentence_nr": sentence_nr,
|
95 |
}
|
96 |
for metric, score in (
|
|
|
112 |
)
|
113 |
top_topics = paragraphs.value_counts("topic").head(5).index
|
114 |
paragraphs = paragraphs[paragraphs["topic"].isin(top_topics)]
|
115 |
+
test_paragraph = paragraphs.sample(n=1, random_state=nr).iloc[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
prompt = f"""Classify the following text into one of these topics: {', '.join(top_topics)}.
|
118 |
+
Reply with only the topic name.
|
119 |
+
|
120 |
+
Text:
|
121 |
+
{test_paragraph.text}
|
122 |
+
"""
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
# some models have poor tokenization for some languages, and the prompt for this task is relatively long, so it sometimes exceeds the context window
|
125 |
# this is not just to blame on the context window but mostly on the model's tokenization, so we assign 0 accuracy in this case
|
126 |
try:
|
127 |
pred = await complete(
|
128 |
model=model,
|
129 |
+
messages=[{"role": "user", "content": prompt}],
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
temperature=0,
|
131 |
max_tokens=30,
|
132 |
)
|
|
|
153 |
"task": "classification",
|
154 |
"metric": "accuracy",
|
155 |
"score": acc,
|
156 |
+
"origin": "human", # FLORES+ is human-translated
|
157 |
"sentence_nr": nr,
|
158 |
}
|
159 |
]
|
|
|
218 |
C: {item["choices"][2]}
|
219 |
D: {item["choices"][3]}
|
220 |
|
221 |
+
Answer with the letter of the correct answer."""
|
222 |
|
223 |
|
224 |
async def mmlu_and_evaluate(model, language_bcp_47, nr):
|
225 |
+
ds_name, task, origin = await load_mmlu(language_bcp_47, nr)
|
226 |
if not task:
|
227 |
return []
|
228 |
+
|
229 |
+
messages = [
|
230 |
+
{
|
231 |
+
"role": "user",
|
232 |
+
"content": f"""Solve the following multiple choice question. Reason step-by-step and then write the final answer as a single letter.
|
233 |
|
234 |
+
Response format: <reasoning> #### <letter>
|
235 |
+
|
236 |
+
---
|
237 |
+
|
238 |
+
{format_multiple_choice(task)}""",
|
239 |
+
},
|
240 |
+
]
|
241 |
try:
|
242 |
response = await complete(
|
243 |
model=model,
|
244 |
messages=messages,
|
245 |
temperature=0,
|
246 |
+
max_tokens=1024,
|
247 |
)
|
248 |
+
if response and "####" in response:
|
249 |
+
answer = response.split("####")[-1].strip()
|
250 |
+
acc = int(answer[:1] == task["answer"])
|
251 |
else:
|
252 |
acc = 0
|
253 |
except Exception as e:
|
|
|
255 |
acc = 0
|
256 |
else:
|
257 |
raise e
|
258 |
+
|
259 |
return [
|
260 |
{
|
261 |
"model": model,
|
|
|
263 |
"task": "mmlu",
|
264 |
"metric": "accuracy",
|
265 |
"score": acc,
|
266 |
+
"origin": origin, # Add origin tag to results
|
267 |
"sentence_nr": nr,
|
268 |
}
|
269 |
]
|
270 |
|
271 |
|
272 |
async def arc_and_evaluate(model, language_bcp_47, nr):
|
273 |
+
ds_name, task, origin = load_uhura_arc_easy(language_bcp_47, nr)
|
274 |
if not task:
|
275 |
return []
|
276 |
|
277 |
+
messages = [
|
278 |
+
{
|
279 |
+
"role": "user",
|
280 |
+
"content": f"""Solve the following multiple choice question. Reason step-by-step and then write the final answer as a single letter.
|
281 |
+
|
282 |
+
Response format: <reasoning> #### <letter>
|
283 |
+
|
284 |
+
---
|
285 |
+
|
286 |
+
{format_multiple_choice(task)}""",
|
287 |
+
},
|
288 |
+
]
|
289 |
try:
|
290 |
response = await complete(
|
291 |
model=model,
|
292 |
messages=messages,
|
293 |
temperature=0,
|
294 |
+
max_tokens=1024,
|
295 |
)
|
296 |
+
if response and "####" in response:
|
297 |
+
answer = response.split("####")[-1].strip()
|
298 |
+
acc = int(answer[:1] == task["answer"])
|
299 |
else:
|
300 |
acc = 0
|
301 |
except Exception as e:
|
|
|
310 |
"task": "arc",
|
311 |
"metric": "accuracy",
|
312 |
"score": acc,
|
313 |
+
"origin": origin,
|
314 |
"sentence_nr": nr,
|
315 |
}
|
316 |
]
|
|
|
336 |
|
337 |
|
338 |
async def truthfulqa_and_evaluate(model, language_bcp_47, nr):
|
339 |
+
ds_name, task, origin = await load_truthfulqa(language_bcp_47, nr)
|
340 |
if not task:
|
341 |
return []
|
342 |
+
|
343 |
+
# Find the correct answer
|
344 |
+
try:
|
345 |
+
correct_choice_index = task["labels"].index(1)
|
346 |
+
answer = letters[correct_choice_index]
|
347 |
+
except (ValueError, IndexError):
|
348 |
+
# Handle cases where there is no correct answer or labels are malformed
|
349 |
+
return []
|
350 |
+
|
351 |
+
messages = [
|
352 |
+
{
|
353 |
+
"role": "user",
|
354 |
+
"content": f"""Answer the following multiple choice question. Reason step-by-step and then write the final answer as a single letter.
|
355 |
+
|
356 |
+
Response format: <reasoning> #### <letter>
|
357 |
+
|
358 |
+
---
|
359 |
+
|
360 |
+
{format_multiple_choice_truthfulqa(task)}""",
|
361 |
+
},
|
362 |
+
]
|
363 |
try:
|
364 |
response = await complete(
|
365 |
model=model,
|
366 |
messages=messages,
|
367 |
temperature=0,
|
368 |
+
max_tokens=1024, # Increased for reasoning
|
369 |
)
|
370 |
+
if response and "####" in response:
|
371 |
+
pred_answer = response.split("####")[-1].strip()
|
372 |
+
acc = int(pred_answer[:1].upper() == answer)
|
373 |
else:
|
374 |
acc = 0
|
375 |
except Exception as e:
|
|
|
384 |
"task": "truthfulqa",
|
385 |
"metric": "accuracy",
|
386 |
"score": acc,
|
387 |
+
"origin": origin,
|
388 |
"sentence_nr": nr,
|
389 |
}
|
390 |
]
|
391 |
|
392 |
|
393 |
async def mgsm_and_evaluate(model, language_bcp_47, nr):
|
394 |
+
ds_slug, question, origin = load_mgsm(language_bcp_47, nr)
|
|
|
|
|
|
|
|
|
|
|
395 |
if not question:
|
396 |
return []
|
397 |
+
|
398 |
+
messages = [
|
399 |
+
{
|
400 |
+
"role": "user",
|
401 |
+
"content": f"""Solve the following math problem. Reason step-by-step and then write the final answer as a number.
|
402 |
+
|
403 |
+
Response format: <reasoning> #### <number>
|
404 |
+
|
405 |
+
---
|
406 |
+
|
407 |
+
{question["question"]}""",
|
408 |
+
},
|
409 |
+
]
|
410 |
response = await complete(
|
411 |
model=model,
|
412 |
+
messages=messages,
|
|
|
|
|
|
|
413 |
temperature=0,
|
414 |
max_tokens=1024,
|
415 |
)
|
416 |
+
if response and "####" in response:
|
417 |
number = response.split("####")[1].strip()
|
418 |
accuracy = int(parse_number(number) == parse_number(question["answer_number"]))
|
419 |
else:
|
|
|
426 |
"task": "mgsm",
|
427 |
"metric": "accuracy",
|
428 |
"score": accuracy,
|
429 |
+
"origin": origin,
|
430 |
"sentence_nr": nr,
|
431 |
}
|
432 |
]
|
|
|
467 |
"translation_from": partial(translate_and_evaluate, mode="from"),
|
468 |
"translation_to": partial(translate_and_evaluate, mode="to"),
|
469 |
"classification": classify_and_evaluate,
|
|
|
470 |
"mmlu": mmlu_and_evaluate,
|
471 |
"arc": arc_and_evaluate,
|
472 |
"truthfulqa": truthfulqa_and_evaluate,
|
473 |
"mgsm": mgsm_and_evaluate,
|
|
|
474 |
}
|
frontend/src/App.js
CHANGED
@@ -19,6 +19,7 @@ function App () {
|
|
19 |
const [loading, setLoading] = useState(true)
|
20 |
const [error, setError] = useState(null)
|
21 |
const [selectedLanguages, setSelectedLanguages] = useState([])
|
|
|
22 |
const [dialogVisible, setDialogVisible] = useState(false)
|
23 |
const [aboutVisible, setAboutVisible] = useState(false)
|
24 |
const [contributeVisible, setContributeVisible] = useState(false)
|
@@ -36,6 +37,7 @@ function App () {
|
|
36 |
})
|
37 |
.then(jsonData => {
|
38 |
setData(jsonData)
|
|
|
39 |
setLoading(false)
|
40 |
})
|
41 |
.catch(err => {
|
@@ -235,6 +237,7 @@ function App () {
|
|
235 |
data={data.model_table}
|
236 |
selectedLanguages={selectedLanguages}
|
237 |
allLanguages={data.language_table || []}
|
|
|
238 |
/>
|
239 |
<LanguageTable
|
240 |
data={data.language_table}
|
@@ -265,7 +268,7 @@ function App () {
|
|
265 |
/>
|
266 |
<Carousel
|
267 |
value={[
|
268 |
-
<WorldMap data={data.countries} />,
|
269 |
<LanguagePlot data={data} />,
|
270 |
<SpeakerPlot data={data} />,
|
271 |
<HistoryPlot data={data} />,
|
@@ -430,6 +433,7 @@ function App () {
|
|
430 |
value={[
|
431 |
<WorldMap
|
432 |
data={data.countries}
|
|
|
433 |
width={windowWidth * 0.7}
|
434 |
height={windowHeight * 0.6}
|
435 |
/>,
|
|
|
19 |
const [loading, setLoading] = useState(true)
|
20 |
const [error, setError] = useState(null)
|
21 |
const [selectedLanguages, setSelectedLanguages] = useState([])
|
22 |
+
const [machineTranslatedMetrics, setMachineTranslatedMetrics] = useState([])
|
23 |
const [dialogVisible, setDialogVisible] = useState(false)
|
24 |
const [aboutVisible, setAboutVisible] = useState(false)
|
25 |
const [contributeVisible, setContributeVisible] = useState(false)
|
|
|
37 |
})
|
38 |
.then(jsonData => {
|
39 |
setData(jsonData)
|
40 |
+
setMachineTranslatedMetrics(jsonData.machine_translated_metrics || [])
|
41 |
setLoading(false)
|
42 |
})
|
43 |
.catch(err => {
|
|
|
237 |
data={data.model_table}
|
238 |
selectedLanguages={selectedLanguages}
|
239 |
allLanguages={data.language_table || []}
|
240 |
+
machineTranslatedMetrics={machineTranslatedMetrics}
|
241 |
/>
|
242 |
<LanguageTable
|
243 |
data={data.language_table}
|
|
|
268 |
/>
|
269 |
<Carousel
|
270 |
value={[
|
271 |
+
<WorldMap data={data.countries} allLanguages={data.language_table} />,
|
272 |
<LanguagePlot data={data} />,
|
273 |
<SpeakerPlot data={data} />,
|
274 |
<HistoryPlot data={data} />,
|
|
|
433 |
value={[
|
434 |
<WorldMap
|
435 |
data={data.countries}
|
436 |
+
allLanguages={data.language_table}
|
437 |
width={windowWidth * 0.7}
|
438 |
height={windowHeight * 0.6}
|
439 |
/>,
|
frontend/src/components/ModelTable.js
CHANGED
@@ -6,7 +6,7 @@ import { useState, useEffect } from 'react'
|
|
6 |
import Medal from './Medal'
|
7 |
import { Slider } from 'primereact/slider'
|
8 |
import ScoreColumns from './ScoreColumns'
|
9 |
-
const ModelTable = ({ data, selectedLanguages = [], allLanguages = [] }) => {
|
10 |
const [filters, setFilters] = useState({
|
11 |
type: { value: null, matchMode: FilterMatchMode.IN },
|
12 |
size: { value: null, matchMode: FilterMatchMode.BETWEEN },
|
@@ -155,17 +155,27 @@ const ModelTable = ({ data, selectedLanguages = [], allLanguages = [] }) => {
|
|
155 |
}
|
156 |
|
157 |
const getHeaderText = () => {
|
158 |
-
// Count languages that have evaluation data (
|
159 |
-
const evaluatedLanguagesCount = allLanguages.filter(lang =>
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
if (selectedLanguages.length === 0) {
|
164 |
return (
|
165 |
<span>
|
166 |
<span style={{ fontWeight: 'bold', fontSize: '1.1em' }}>AI Models</span>
|
167 |
<span style={{ fontSize: '0.85em', marginLeft: '0.5rem' }}>
|
168 |
-
|
169 |
</span>
|
170 |
</span>
|
171 |
)
|
@@ -249,7 +259,7 @@ const ModelTable = ({ data, selectedLanguages = [], allLanguages = [] }) => {
|
|
249 |
body={costBodyTemplate}
|
250 |
style={{ minWidth: '5rem' }}
|
251 |
/>
|
252 |
-
{ScoreColumns}
|
253 |
</DataTable>
|
254 |
)
|
255 |
}
|
|
|
6 |
import Medal from './Medal'
|
7 |
import { Slider } from 'primereact/slider'
|
8 |
import ScoreColumns from './ScoreColumns'
|
9 |
+
const ModelTable = ({ data, selectedLanguages = [], allLanguages = [], machineTranslatedMetrics = [] }) => {
|
10 |
const [filters, setFilters] = useState({
|
11 |
type: { value: null, matchMode: FilterMatchMode.IN },
|
12 |
size: { value: null, matchMode: FilterMatchMode.BETWEEN },
|
|
|
155 |
}
|
156 |
|
157 |
const getHeaderText = () => {
|
158 |
+
// Count languages that have any evaluation data (any task scores available)
|
159 |
+
const evaluatedLanguagesCount = allLanguages.filter(lang => {
|
160 |
+
// Check if language has any task scores (not just average)
|
161 |
+
const hasAnyScores = [
|
162 |
+
'translation_from_bleu',
|
163 |
+
'translation_to_bleu',
|
164 |
+
'classification_accuracy',
|
165 |
+
'mmlu_accuracy',
|
166 |
+
'arc_accuracy',
|
167 |
+
'truthfulqa_accuracy',
|
168 |
+
'mgsm_accuracy'
|
169 |
+
].some(metric => lang[metric] !== null && lang[metric] !== undefined)
|
170 |
+
return hasAnyScores
|
171 |
+
}).length
|
172 |
|
173 |
if (selectedLanguages.length === 0) {
|
174 |
return (
|
175 |
<span>
|
176 |
<span style={{ fontWeight: 'bold', fontSize: '1.1em' }}>AI Models</span>
|
177 |
<span style={{ fontSize: '0.85em', marginLeft: '0.5rem' }}>
|
178 |
+
Performance across {evaluatedLanguagesCount} evaluated languages
|
179 |
</span>
|
180 |
</span>
|
181 |
)
|
|
|
259 |
body={costBodyTemplate}
|
260 |
style={{ minWidth: '5rem' }}
|
261 |
/>
|
262 |
+
{ScoreColumns(machineTranslatedMetrics)}
|
263 |
</DataTable>
|
264 |
)
|
265 |
}
|
frontend/src/components/ScoreColumns.js
CHANGED
@@ -2,21 +2,22 @@ import { Column } from 'primereact/column'
|
|
2 |
import ScoreField from './ScoreField'
|
3 |
|
4 |
const scoreBodyTemplate = (field, options = {}) => {
|
5 |
-
const { minScore = 0, maxScore = 1 } = options
|
6 |
|
7 |
return rowData => {
|
8 |
const score = rowData[field]
|
9 |
-
|
|
|
10 |
}
|
11 |
}
|
12 |
|
13 |
-
const ScoreColumns = [
|
14 |
<Column
|
15 |
field='average'
|
16 |
header='Proficiency'
|
17 |
headerTooltip='Language Proficiency Score (average of the scores for each task, after min-max normalization)'
|
18 |
sortable
|
19 |
-
body={scoreBodyTemplate('average', { minScore: 0.2, maxScore: 0.5 })}
|
20 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
21 |
/>,
|
22 |
<Column
|
@@ -26,7 +27,8 @@ const ScoreColumns = [
|
|
26 |
sortable
|
27 |
body={scoreBodyTemplate('translation_from_bleu', {
|
28 |
minScore: 0,
|
29 |
-
maxScore: 0.5
|
|
|
30 |
})}
|
31 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
32 |
/>,
|
@@ -37,7 +39,8 @@ const ScoreColumns = [
|
|
37 |
sortable
|
38 |
body={scoreBodyTemplate('translation_to_bleu', {
|
39 |
minScore: 0,
|
40 |
-
maxScore: 0.5
|
|
|
41 |
})}
|
42 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
43 |
/>,
|
@@ -48,7 +51,8 @@ const ScoreColumns = [
|
|
48 |
sortable
|
49 |
body={scoreBodyTemplate('classification_accuracy', {
|
50 |
minScore: 0,
|
51 |
-
maxScore: 0.5
|
|
|
52 |
})}
|
53 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
54 |
/>,
|
@@ -69,7 +73,8 @@ const ScoreColumns = [
|
|
69 |
sortable
|
70 |
body={scoreBodyTemplate('mmlu_accuracy', {
|
71 |
minScore: 0,
|
72 |
-
maxScore: 1
|
|
|
73 |
})}
|
74 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
75 |
/>,
|
@@ -80,7 +85,8 @@ const ScoreColumns = [
|
|
80 |
sortable
|
81 |
body={scoreBodyTemplate('arc_accuracy', {
|
82 |
minScore: 0,
|
83 |
-
maxScore: 1
|
|
|
84 |
})}
|
85 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
86 |
/>,
|
@@ -91,7 +97,8 @@ const ScoreColumns = [
|
|
91 |
sortable
|
92 |
body={scoreBodyTemplate('mgsm_accuracy', {
|
93 |
minScore: 0,
|
94 |
-
maxScore: 1
|
|
|
95 |
})}
|
96 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
97 |
/>,
|
|
|
2 |
import ScoreField from './ScoreField'
|
3 |
|
4 |
const scoreBodyTemplate = (field, options = {}) => {
|
5 |
+
const { minScore = 0, maxScore = 1, machineTranslatedMetrics = [] } = options
|
6 |
|
7 |
return rowData => {
|
8 |
const score = rowData[field]
|
9 |
+
const isMachineTranslated = machineTranslatedMetrics.includes(field)
|
10 |
+
return ScoreField(score, minScore, maxScore, isMachineTranslated)
|
11 |
}
|
12 |
}
|
13 |
|
14 |
+
const ScoreColumns = (machineTranslatedMetrics = []) => [
|
15 |
<Column
|
16 |
field='average'
|
17 |
header='Proficiency'
|
18 |
headerTooltip='Language Proficiency Score (average of the scores for each task, after min-max normalization)'
|
19 |
sortable
|
20 |
+
body={scoreBodyTemplate('average', { minScore: 0.2, maxScore: 0.5, machineTranslatedMetrics })}
|
21 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
22 |
/>,
|
23 |
<Column
|
|
|
27 |
sortable
|
28 |
body={scoreBodyTemplate('translation_from_bleu', {
|
29 |
minScore: 0,
|
30 |
+
maxScore: 0.5,
|
31 |
+
machineTranslatedMetrics
|
32 |
})}
|
33 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
34 |
/>,
|
|
|
39 |
sortable
|
40 |
body={scoreBodyTemplate('translation_to_bleu', {
|
41 |
minScore: 0,
|
42 |
+
maxScore: 0.5,
|
43 |
+
machineTranslatedMetrics
|
44 |
})}
|
45 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
46 |
/>,
|
|
|
51 |
sortable
|
52 |
body={scoreBodyTemplate('classification_accuracy', {
|
53 |
minScore: 0,
|
54 |
+
maxScore: 0.5,
|
55 |
+
machineTranslatedMetrics
|
56 |
})}
|
57 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
58 |
/>,
|
|
|
73 |
sortable
|
74 |
body={scoreBodyTemplate('mmlu_accuracy', {
|
75 |
minScore: 0,
|
76 |
+
maxScore: 1,
|
77 |
+
machineTranslatedMetrics
|
78 |
})}
|
79 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
80 |
/>,
|
|
|
85 |
sortable
|
86 |
body={scoreBodyTemplate('arc_accuracy', {
|
87 |
minScore: 0,
|
88 |
+
maxScore: 1,
|
89 |
+
machineTranslatedMetrics
|
90 |
})}
|
91 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
92 |
/>,
|
|
|
97 |
sortable
|
98 |
body={scoreBodyTemplate('mgsm_accuracy', {
|
99 |
minScore: 0,
|
100 |
+
maxScore: 1,
|
101 |
+
machineTranslatedMetrics
|
102 |
})}
|
103 |
style={{ minWidth: '5rem', maxWidth: '10rem' }}
|
104 |
/>,
|
frontend/src/components/ScoreField.js
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
const ScoreField = (score, minScore, maxScore) => {
|
2 |
let percentage = 100
|
3 |
let barColor = "rgba(210, 106, 255, 0.1)" // light violet for missing data
|
4 |
if (score !== null) {
|
@@ -50,6 +50,7 @@ const ScoreField = (score, minScore, maxScore) => {
|
|
50 |
}}
|
51 |
>
|
52 |
{score !== null ? (score * 100).toFixed(1)+"%" : 'β'}
|
|
|
53 |
</span>
|
54 |
</div>
|
55 |
)
|
|
|
1 |
+
const ScoreField = (score, minScore, maxScore, isMachineTranslated = false) => {
|
2 |
let percentage = 100
|
3 |
let barColor = "rgba(210, 106, 255, 0.1)" // light violet for missing data
|
4 |
if (score !== null) {
|
|
|
50 |
}}
|
51 |
>
|
52 |
{score !== null ? (score * 100).toFixed(1)+"%" : 'β'}
|
53 |
+
{isMachineTranslated && score !== null && <span style={{color: '#666', fontSize: '0.8em'}}>*</span>}
|
54 |
</span>
|
55 |
</div>
|
56 |
)
|
frontend/src/components/WorldMap.js
CHANGED
@@ -32,7 +32,7 @@ const makeTitle = data => d => {
|
|
32 |
return `${d.properties.ADMIN} β ${cData?.score === null || cData?.score === undefined ? "n/a" : cData.score.toFixed(2)}\n\n${langstring}`
|
33 |
}
|
34 |
|
35 |
-
const WorldMap = ({ data, width = 750, height = 500 }) => {
|
36 |
const containerRef = useRef()
|
37 |
const [mapData, setMapData] = useState()
|
38 |
|
@@ -48,8 +48,22 @@ const WorldMap = ({ data, width = 750, height = 500 }) => {
|
|
48 |
acc[country.iso2] = country
|
49 |
return acc
|
50 |
}, {})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
const plot = Plot.plot({
|
52 |
-
subtitle:
|
53 |
width: width,
|
54 |
height: height,
|
55 |
projection: 'equal-earth',
|
|
|
32 |
return `${d.properties.ADMIN} β ${cData?.score === null || cData?.score === undefined ? "n/a" : cData.score.toFixed(2)}\n\n${langstring}`
|
33 |
}
|
34 |
|
35 |
+
const WorldMap = ({ data, width = 750, height = 500, allLanguages = [] }) => {
|
36 |
const containerRef = useRef()
|
37 |
const [mapData, setMapData] = useState()
|
38 |
|
|
|
48 |
acc[country.iso2] = country
|
49 |
return acc
|
50 |
}, {})
|
51 |
+
// Count languages that have any evaluation data
|
52 |
+
const evaluatedLanguagesCount = allLanguages.filter(lang => {
|
53 |
+
const hasAnyScores = [
|
54 |
+
'translation_from_bleu',
|
55 |
+
'translation_to_bleu',
|
56 |
+
'classification_accuracy',
|
57 |
+
'mmlu_accuracy',
|
58 |
+
'arc_accuracy',
|
59 |
+
'truthfulqa_accuracy',
|
60 |
+
'mgsm_accuracy'
|
61 |
+
].some(metric => lang[metric] !== null && lang[metric] !== undefined)
|
62 |
+
return hasAnyScores
|
63 |
+
}).length
|
64 |
+
|
65 |
const plot = Plot.plot({
|
66 |
+
subtitle: `Language Proficiency Score by Country (Coverage: ~${evaluatedLanguagesCount} languages evaluated)`,
|
67 |
width: width,
|
68 |
height: height,
|
69 |
projection: 'equal-earth',
|
languages.json
CHANGED
@@ -7,7 +7,7 @@
|
|
7 |
"family":"Indo-European",
|
8 |
"flores_path":"eng_Latn",
|
9 |
"fleurs_tag":"en_us",
|
10 |
-
"commonvoice_hours":
|
11 |
"commonvoice_locale":"en",
|
12 |
"in_benchmark":true
|
13 |
},
|
@@ -79,7 +79,7 @@
|
|
79 |
"family":"Indo-European",
|
80 |
"flores_path":"fra_Latn",
|
81 |
"fleurs_tag":"fr_fr",
|
82 |
-
"commonvoice_hours":
|
83 |
"commonvoice_locale":"fr",
|
84 |
"in_benchmark":true
|
85 |
},
|
@@ -151,7 +151,7 @@
|
|
151 |
"family":"Austronesian",
|
152 |
"flores_path":"ind_Latn",
|
153 |
"fleurs_tag":"id_id",
|
154 |
-
"commonvoice_hours":
|
155 |
"commonvoice_locale":"id",
|
156 |
"in_benchmark":true
|
157 |
},
|
@@ -163,7 +163,7 @@
|
|
163 |
"family":"Indo-European",
|
164 |
"flores_path":"deu_Latn",
|
165 |
"fleurs_tag":"de_de",
|
166 |
-
"commonvoice_hours":
|
167 |
"commonvoice_locale":"de",
|
168 |
"in_benchmark":true
|
169 |
},
|
@@ -439,7 +439,7 @@
|
|
439 |
"family":"Indo-European",
|
440 |
"flores_path":"pol_Latn",
|
441 |
"fleurs_tag":"pl_pl",
|
442 |
-
"commonvoice_hours":
|
443 |
"commonvoice_locale":"pl",
|
444 |
"in_benchmark":true
|
445 |
},
|
@@ -619,7 +619,7 @@
|
|
619 |
"family":"Indo-European",
|
620 |
"flores_path":"nld_Latn",
|
621 |
"fleurs_tag":"nl_nl",
|
622 |
-
"commonvoice_hours":
|
623 |
"commonvoice_locale":"nl",
|
624 |
"in_benchmark":true
|
625 |
},
|
@@ -1291,7 +1291,7 @@
|
|
1291 |
"family":"Indo-European",
|
1292 |
"flores_path":"cat_Latn",
|
1293 |
"fleurs_tag":"ca_es",
|
1294 |
-
"commonvoice_hours":
|
1295 |
"commonvoice_locale":"ca",
|
1296 |
"in_benchmark":true
|
1297 |
},
|
@@ -1303,7 +1303,7 @@
|
|
1303 |
"family":"Afro-Asiatic",
|
1304 |
"flores_path":"heb_Hebr",
|
1305 |
"fleurs_tag":"he_il",
|
1306 |
-
"commonvoice_hours":1.
|
1307 |
"commonvoice_locale":"he",
|
1308 |
"in_benchmark":true
|
1309 |
},
|
@@ -1375,7 +1375,7 @@
|
|
1375 |
"family":"Turkic",
|
1376 |
"flores_path":"uig_Arab",
|
1377 |
"fleurs_tag":null,
|
1378 |
-
"commonvoice_hours":
|
1379 |
"commonvoice_locale":"ug",
|
1380 |
"in_benchmark":true
|
1381 |
},
|
@@ -1675,7 +1675,7 @@
|
|
1675 |
"family":"Tupian",
|
1676 |
"flores_path":"gug_Latn",
|
1677 |
"fleurs_tag":null,
|
1678 |
-
"commonvoice_hours":4.
|
1679 |
"commonvoice_locale":"gn",
|
1680 |
"in_benchmark":true
|
1681 |
},
|
@@ -1747,7 +1747,7 @@
|
|
1747 |
"family":"Indo-European",
|
1748 |
"flores_path":"nob_Latn",
|
1749 |
"fleurs_tag":"nb_no",
|
1750 |
-
"commonvoice_hours":
|
1751 |
"commonvoice_locale":"nb-NO",
|
1752 |
"in_benchmark":true
|
1753 |
},
|
@@ -2155,7 +2155,7 @@
|
|
2155 |
"family":"Kartvelian",
|
2156 |
"flores_path":"kat_Geor",
|
2157 |
"fleurs_tag":"ka_ge",
|
2158 |
-
"commonvoice_hours":
|
2159 |
"commonvoice_locale":"ka",
|
2160 |
"in_benchmark":true
|
2161 |
},
|
@@ -2167,7 +2167,7 @@
|
|
2167 |
"family":"Indo-European",
|
2168 |
"flores_path":"glg_Latn",
|
2169 |
"fleurs_tag":"gl_es",
|
2170 |
-
"commonvoice_hours":
|
2171 |
"commonvoice_locale":"gl",
|
2172 |
"in_benchmark":true
|
2173 |
},
|
@@ -3331,7 +3331,7 @@
|
|
3331 |
"family":"Indo-European",
|
3332 |
"flores_path":"gle_Latn",
|
3333 |
"fleurs_tag":"ga_ie",
|
3334 |
-
"commonvoice_hours":
|
3335 |
"commonvoice_locale":"ga-IE",
|
3336 |
"in_benchmark":true
|
3337 |
},
|
@@ -3559,7 +3559,7 @@
|
|
3559 |
"family":"Abkhaz-Adyge",
|
3560 |
"flores_path":null,
|
3561 |
"fleurs_tag":null,
|
3562 |
-
"commonvoice_hours":
|
3563 |
"commonvoice_locale":"kbd",
|
3564 |
"in_benchmark":false
|
3565 |
},
|
@@ -3679,7 +3679,7 @@
|
|
3679 |
"family":"Indo-European",
|
3680 |
"flores_path":"ydd_Hebr",
|
3681 |
"fleurs_tag":null,
|
3682 |
-
"commonvoice_hours":
|
3683 |
"commonvoice_locale":"yi",
|
3684 |
"in_benchmark":true
|
3685 |
},
|
@@ -5011,7 +5011,7 @@
|
|
5011 |
"family":"Nakh-Daghestanian",
|
5012 |
"flores_path":"dar_Cyrl",
|
5013 |
"fleurs_tag":null,
|
5014 |
-
"commonvoice_hours":0.
|
5015 |
"commonvoice_locale":"dar",
|
5016 |
"in_benchmark":true
|
5017 |
},
|
|
|
7 |
"family":"Indo-European",
|
8 |
"flores_path":"eng_Latn",
|
9 |
"fleurs_tag":"en_us",
|
10 |
+
"commonvoice_hours":2679.0,
|
11 |
"commonvoice_locale":"en",
|
12 |
"in_benchmark":true
|
13 |
},
|
|
|
79 |
"family":"Indo-European",
|
80 |
"flores_path":"fra_Latn",
|
81 |
"fleurs_tag":"fr_fr",
|
82 |
+
"commonvoice_hours":1068.0,
|
83 |
"commonvoice_locale":"fr",
|
84 |
"in_benchmark":true
|
85 |
},
|
|
|
151 |
"family":"Austronesian",
|
152 |
"flores_path":"ind_Latn",
|
153 |
"fleurs_tag":"id_id",
|
154 |
+
"commonvoice_hours":34.0,
|
155 |
"commonvoice_locale":"id",
|
156 |
"in_benchmark":true
|
157 |
},
|
|
|
163 |
"family":"Indo-European",
|
164 |
"flores_path":"deu_Latn",
|
165 |
"fleurs_tag":"de_de",
|
166 |
+
"commonvoice_hours":1371.0,
|
167 |
"commonvoice_locale":"de",
|
168 |
"in_benchmark":true
|
169 |
},
|
|
|
439 |
"family":"Indo-European",
|
440 |
"flores_path":"pol_Latn",
|
441 |
"fleurs_tag":"pl_pl",
|
442 |
+
"commonvoice_hours":176.0,
|
443 |
"commonvoice_locale":"pl",
|
444 |
"in_benchmark":true
|
445 |
},
|
|
|
619 |
"family":"Indo-European",
|
620 |
"flores_path":"nld_Latn",
|
621 |
"fleurs_tag":"nl_nl",
|
622 |
+
"commonvoice_hours":123.0,
|
623 |
"commonvoice_locale":"nl",
|
624 |
"in_benchmark":true
|
625 |
},
|
|
|
1291 |
"family":"Indo-European",
|
1292 |
"flores_path":"cat_Latn",
|
1293 |
"fleurs_tag":"ca_es",
|
1294 |
+
"commonvoice_hours":2878.0,
|
1295 |
"commonvoice_locale":"ca",
|
1296 |
"in_benchmark":true
|
1297 |
},
|
|
|
1303 |
"family":"Afro-Asiatic",
|
1304 |
"flores_path":"heb_Hebr",
|
1305 |
"fleurs_tag":"he_il",
|
1306 |
+
"commonvoice_hours":1.7,
|
1307 |
"commonvoice_locale":"he",
|
1308 |
"in_benchmark":true
|
1309 |
},
|
|
|
1375 |
"family":"Turkic",
|
1376 |
"flores_path":"uig_Arab",
|
1377 |
"fleurs_tag":null,
|
1378 |
+
"commonvoice_hours":427.0,
|
1379 |
"commonvoice_locale":"ug",
|
1380 |
"in_benchmark":true
|
1381 |
},
|
|
|
1675 |
"family":"Tupian",
|
1676 |
"flores_path":"gug_Latn",
|
1677 |
"fleurs_tag":null,
|
1678 |
+
"commonvoice_hours":4.1,
|
1679 |
"commonvoice_locale":"gn",
|
1680 |
"in_benchmark":true
|
1681 |
},
|
|
|
1747 |
"family":"Indo-European",
|
1748 |
"flores_path":"nob_Latn",
|
1749 |
"fleurs_tag":"nb_no",
|
1750 |
+
"commonvoice_hours":1.5,
|
1751 |
"commonvoice_locale":"nb-NO",
|
1752 |
"in_benchmark":true
|
1753 |
},
|
|
|
2155 |
"family":"Kartvelian",
|
2156 |
"flores_path":"kat_Geor",
|
2157 |
"fleurs_tag":"ka_ge",
|
2158 |
+
"commonvoice_hours":167.0,
|
2159 |
"commonvoice_locale":"ka",
|
2160 |
"in_benchmark":true
|
2161 |
},
|
|
|
2167 |
"family":"Indo-European",
|
2168 |
"flores_path":"glg_Latn",
|
2169 |
"fleurs_tag":"gl_es",
|
2170 |
+
"commonvoice_hours":129.0,
|
2171 |
"commonvoice_locale":"gl",
|
2172 |
"in_benchmark":true
|
2173 |
},
|
|
|
3331 |
"family":"Indo-European",
|
3332 |
"flores_path":"gle_Latn",
|
3333 |
"fleurs_tag":"ga_ie",
|
3334 |
+
"commonvoice_hours":9.1,
|
3335 |
"commonvoice_locale":"ga-IE",
|
3336 |
"in_benchmark":true
|
3337 |
},
|
|
|
3559 |
"family":"Abkhaz-Adyge",
|
3560 |
"flores_path":null,
|
3561 |
"fleurs_tag":null,
|
3562 |
+
"commonvoice_hours":94.0,
|
3563 |
"commonvoice_locale":"kbd",
|
3564 |
"in_benchmark":false
|
3565 |
},
|
|
|
3679 |
"family":"Indo-European",
|
3680 |
"flores_path":"ydd_Hebr",
|
3681 |
"fleurs_tag":null,
|
3682 |
+
"commonvoice_hours":1.4,
|
3683 |
"commonvoice_locale":"yi",
|
3684 |
"in_benchmark":true
|
3685 |
},
|
|
|
5011 |
"family":"Nakh-Daghestanian",
|
5012 |
"flores_path":"dar_Cyrl",
|
5013 |
"fleurs_tag":null,
|
5014 |
+
"commonvoice_hours":0.9,
|
5015 |
"commonvoice_locale":"dar",
|
5016 |
"in_benchmark":true
|
5017 |
},
|
models.json
CHANGED
@@ -1,4 +1,44 @@
|
|
1 |
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
{
|
3 |
"id":"amazon\/nova-micro-v1",
|
4 |
"name":"Nova Micro 1.0",
|
@@ -19,6 +59,66 @@
|
|
19 |
"mgsm"
|
20 |
]
|
21 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
{
|
23 |
"id":"anthropic\/claude-3.5-sonnet",
|
24 |
"name":"Claude 3.5 Sonnet",
|
@@ -79,6 +179,106 @@
|
|
79 |
"mgsm"
|
80 |
]
|
81 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
{
|
83 |
"id":"deepseek\/deepseek-chat",
|
84 |
"name":"DeepSeek V3",
|
@@ -128,7 +328,7 @@
|
|
128 |
"size":684531386000.0,
|
129 |
"type":"open-source",
|
130 |
"license":"Mit",
|
131 |
-
"creation_date":1737331200000
|
132 |
"tasks":[
|
133 |
"translation_from",
|
134 |
"translation_to",
|
@@ -179,6 +379,26 @@
|
|
179 |
"mgsm"
|
180 |
]
|
181 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
{
|
183 |
"id":"google\/gemini-2.0-flash-lite-001",
|
184 |
"name":"Gemini 2.0 Flash Lite",
|
@@ -219,6 +439,26 @@
|
|
219 |
"mgsm"
|
220 |
]
|
221 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
{
|
223 |
"id":"google\/gemini-2.5-flash-lite-preview-06-17",
|
224 |
"name":"Gemini 2.5 Flash Lite Preview 06-17",
|
@@ -370,15 +610,15 @@
|
|
370 |
]
|
371 |
},
|
372 |
{
|
373 |
-
"id":"google\/
|
374 |
-
"name":"
|
375 |
"provider_name":"Google",
|
376 |
-
"cost":
|
377 |
-
"hf_id":
|
378 |
-
"size":
|
379 |
-
"type":"
|
380 |
-
"license":
|
381 |
-
"creation_date":
|
382 |
"tasks":[
|
383 |
"translation_from",
|
384 |
"translation_to",
|
@@ -390,30 +630,35 @@
|
|
390 |
]
|
391 |
},
|
392 |
{
|
393 |
-
"id":"google\/
|
394 |
-
"name":"
|
395 |
"provider_name":"Google",
|
396 |
-
"cost":
|
397 |
-
"hf_id":
|
398 |
-
"size":
|
399 |
-
"type":"
|
400 |
-
"license":
|
401 |
-
"creation_date":
|
402 |
"tasks":[
|
403 |
"translation_from",
|
404 |
-
"translation_to"
|
|
|
|
|
|
|
|
|
|
|
405 |
]
|
406 |
},
|
407 |
{
|
408 |
-
"id":"
|
409 |
-
"name":"
|
410 |
-
"provider_name":"
|
411 |
-
"cost":0.
|
412 |
-
"hf_id":"
|
413 |
-
"size":
|
414 |
"type":"open-source",
|
415 |
-
"license":"
|
416 |
-
"creation_date":
|
417 |
"tasks":[
|
418 |
"translation_from",
|
419 |
"translation_to",
|
@@ -425,15 +670,15 @@
|
|
425 |
]
|
426 |
},
|
427 |
{
|
428 |
-
"id":"
|
429 |
-
"name":"
|
430 |
-
"provider_name":"
|
431 |
-
"cost":0.
|
432 |
-
"hf_id":"
|
433 |
-
"size":
|
434 |
"type":"open-source",
|
435 |
-
"license":"
|
436 |
-
"creation_date":
|
437 |
"tasks":[
|
438 |
"translation_from",
|
439 |
"translation_to",
|
@@ -445,15 +690,15 @@
|
|
445 |
]
|
446 |
},
|
447 |
{
|
448 |
-
"id":"
|
449 |
-
"name":"
|
450 |
-
"provider_name":"
|
451 |
-
"cost":0.
|
452 |
-
"hf_id":"
|
453 |
-
"size":
|
454 |
"type":"open-source",
|
455 |
-
"license":"
|
456 |
-
"creation_date":
|
457 |
"tasks":[
|
458 |
"translation_from",
|
459 |
"translation_to",
|
@@ -465,9 +710,164 @@
|
|
465 |
]
|
466 |
},
|
467 |
{
|
468 |
-
"id":"
|
469 |
-
"name":"
|
470 |
-
"provider_name":"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
471 |
"cost":0.0,
|
472 |
"hf_id":"meta-llama\/Llama-3.1-8B-Instruct",
|
473 |
"size":8030261248.0,
|
@@ -476,6 +876,26 @@
|
|
476 |
"creation_date":1721260800000.0,
|
477 |
"tasks":null
|
478 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
479 |
{
|
480 |
"id":"meta-llama\/llama-3.2-1b-instruct",
|
481 |
"name":"Llama 3.2 1B Instruct",
|
@@ -488,6 +908,26 @@
|
|
488 |
"creation_date":1726617600000.0,
|
489 |
"tasks":null
|
490 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
491 |
{
|
492 |
"id":"meta-llama\/llama-3.3-70b-instruct",
|
493 |
"name":"Llama 3.3 70B Instruct",
|
@@ -529,15 +969,295 @@
|
|
529 |
]
|
530 |
},
|
531 |
{
|
532 |
-
"id":"
|
533 |
-
"name":"
|
534 |
-
"provider_name":"
|
535 |
-
"cost":0.
|
536 |
-
"hf_id":"
|
537 |
-
"size":
|
538 |
-
"type":"open-source",
|
539 |
-
"license":"
|
540 |
-
"creation_date":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
541 |
"tasks":[
|
542 |
"translation_from",
|
543 |
"translation_to",
|
@@ -549,15 +1269,15 @@
|
|
549 |
]
|
550 |
},
|
551 |
{
|
552 |
-
"id":"
|
553 |
-
"name":"
|
554 |
-
"provider_name":"
|
555 |
-
"cost":0.
|
556 |
-
"hf_id":"
|
557 |
-
"size":
|
558 |
"type":"open-source",
|
559 |
-
"license":"
|
560 |
-
"creation_date":
|
561 |
"tasks":[
|
562 |
"translation_from",
|
563 |
"translation_to",
|
@@ -569,15 +1289,15 @@
|
|
569 |
]
|
570 |
},
|
571 |
{
|
572 |
-
"id":"mistralai\/
|
573 |
-
"name":"
|
574 |
"provider_name":"Mistral",
|
575 |
-
"cost":0.
|
576 |
-
"hf_id":"mistralai\/
|
577 |
-
"size":
|
578 |
"type":"open-source",
|
579 |
"license":"Apache 2.0",
|
580 |
-
"creation_date":
|
581 |
"tasks":[
|
582 |
"translation_from",
|
583 |
"translation_to",
|
@@ -589,15 +1309,15 @@
|
|
589 |
]
|
590 |
},
|
591 |
{
|
592 |
-
"id":"
|
593 |
-
"name":"
|
594 |
-
"provider_name":"
|
595 |
-
"cost":0.
|
596 |
-
"hf_id":
|
597 |
"size":null,
|
598 |
-
"type":"
|
599 |
-
"license":
|
600 |
-
"creation_date":
|
601 |
"tasks":[
|
602 |
"translation_from",
|
603 |
"translation_to",
|
@@ -609,15 +1329,15 @@
|
|
609 |
]
|
610 |
},
|
611 |
{
|
612 |
-
"id":"
|
613 |
-
"name":"
|
614 |
-
"provider_name":"
|
615 |
-
"cost":
|
616 |
-
"hf_id":
|
617 |
-
"size":
|
618 |
-
"type":"
|
619 |
-
"license":
|
620 |
-
"creation_date":
|
621 |
"tasks":[
|
622 |
"translation_from",
|
623 |
"translation_to",
|
@@ -708,6 +1428,26 @@
|
|
708 |
"mgsm"
|
709 |
]
|
710 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
711 |
{
|
712 |
"id":"openai\/gpt-4o-mini",
|
713 |
"name":"GPT-4o-mini",
|
@@ -728,6 +1468,86 @@
|
|
728 |
"mgsm"
|
729 |
]
|
730 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
731 |
{
|
732 |
"id":"qwen\/qwen3-235b-a22b",
|
733 |
"name":"Qwen3 235B A22B",
|
@@ -787,5 +1607,185 @@
|
|
787 |
"truthfulqa",
|
788 |
"mgsm"
|
789 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
790 |
}
|
791 |
]
|
|
|
1 |
[
|
2 |
+
{
|
3 |
+
"id":"aion-labs\/aion-1.0-mini",
|
4 |
+
"name":"Aion-1.0-Mini",
|
5 |
+
"provider_name":"AionLabs",
|
6 |
+
"cost":1.4,
|
7 |
+
"hf_id":"FuseAI\/FuseO1-DeepSeekR1-QwQ-SkyT1-32B-Preview",
|
8 |
+
"size":32763876352.0,
|
9 |
+
"type":"open-source",
|
10 |
+
"license":"Apache 2.0",
|
11 |
+
"creation_date":1737331200000.0,
|
12 |
+
"tasks":[
|
13 |
+
"translation_from",
|
14 |
+
"translation_to",
|
15 |
+
"classification",
|
16 |
+
"mmlu",
|
17 |
+
"arc",
|
18 |
+
"truthfulqa",
|
19 |
+
"mgsm"
|
20 |
+
]
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"id":"aion-labs\/aion-rp-llama-3.1-8b",
|
24 |
+
"name":"Aion-RP 1.0 (8B)",
|
25 |
+
"provider_name":"AionLabs",
|
26 |
+
"cost":0.2,
|
27 |
+
"hf_id":"aion-labs\/Aion-RP-Llama-3.1-8B",
|
28 |
+
"size":8030261248.0,
|
29 |
+
"type":"open-source",
|
30 |
+
"license":"Apache 2.0",
|
31 |
+
"creation_date":1731110400000,
|
32 |
+
"tasks":[
|
33 |
+
"translation_from",
|
34 |
+
"translation_to",
|
35 |
+
"classification",
|
36 |
+
"mmlu",
|
37 |
+
"arc",
|
38 |
+
"truthfulqa",
|
39 |
+
"mgsm"
|
40 |
+
]
|
41 |
+
},
|
42 |
{
|
43 |
"id":"amazon\/nova-micro-v1",
|
44 |
"name":"Nova Micro 1.0",
|
|
|
59 |
"mgsm"
|
60 |
]
|
61 |
},
|
62 |
+
{
|
63 |
+
"id":"amazon\/nova-pro-v1",
|
64 |
+
"name":"Nova Pro 1.0",
|
65 |
+
"provider_name":"Amazon",
|
66 |
+
"cost":3.2,
|
67 |
+
"hf_id":null,
|
68 |
+
"size":null,
|
69 |
+
"type":"closed-source",
|
70 |
+
"license":null,
|
71 |
+
"creation_date":1733356800000,
|
72 |
+
"tasks":[
|
73 |
+
"translation_from",
|
74 |
+
"translation_to",
|
75 |
+
"classification",
|
76 |
+
"mmlu",
|
77 |
+
"arc",
|
78 |
+
"truthfulqa",
|
79 |
+
"mgsm"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"id":"anthracite-org\/magnum-v4-72b",
|
84 |
+
"name":"Magnum v4 72B",
|
85 |
+
"provider_name":"Magnum v4 72B",
|
86 |
+
"cost":3.0,
|
87 |
+
"hf_id":"anthracite-org\/magnum-v4-72b",
|
88 |
+
"size":72706203648.0,
|
89 |
+
"type":"open-source",
|
90 |
+
"license":"Apache 2.0",
|
91 |
+
"creation_date":1726790400000.0,
|
92 |
+
"tasks":[
|
93 |
+
"translation_from",
|
94 |
+
"translation_to",
|
95 |
+
"classification",
|
96 |
+
"mmlu",
|
97 |
+
"arc",
|
98 |
+
"truthfulqa",
|
99 |
+
"mgsm"
|
100 |
+
]
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"id":"anthropic\/claude-3-haiku",
|
104 |
+
"name":"Claude 3 Haiku",
|
105 |
+
"provider_name":"Anthropic",
|
106 |
+
"cost":1.25,
|
107 |
+
"hf_id":null,
|
108 |
+
"size":null,
|
109 |
+
"type":"closed-source",
|
110 |
+
"license":null,
|
111 |
+
"creation_date":1710288000000,
|
112 |
+
"tasks":[
|
113 |
+
"translation_from",
|
114 |
+
"translation_to",
|
115 |
+
"classification",
|
116 |
+
"mmlu",
|
117 |
+
"arc",
|
118 |
+
"truthfulqa",
|
119 |
+
"mgsm"
|
120 |
+
]
|
121 |
+
},
|
122 |
{
|
123 |
"id":"anthropic\/claude-3.5-sonnet",
|
124 |
"name":"Claude 3.5 Sonnet",
|
|
|
179 |
"mgsm"
|
180 |
]
|
181 |
},
|
182 |
+
{
|
183 |
+
"id":"arcee-ai\/maestro-reasoning",
|
184 |
+
"name":"Maestro Reasoning",
|
185 |
+
"provider_name":"Arcee AI",
|
186 |
+
"cost":3.3,
|
187 |
+
"hf_id":null,
|
188 |
+
"size":null,
|
189 |
+
"type":"closed-source",
|
190 |
+
"license":null,
|
191 |
+
"creation_date":1746403200000.0,
|
192 |
+
"tasks":[
|
193 |
+
"translation_from",
|
194 |
+
"translation_to",
|
195 |
+
"classification",
|
196 |
+
"mmlu",
|
197 |
+
"arc",
|
198 |
+
"truthfulqa",
|
199 |
+
"mgsm"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"id":"cognitivecomputations\/dolphin3.0-r1-mistral-24b",
|
204 |
+
"name":"Dolphin3.0 R1 Mistral 24B",
|
205 |
+
"provider_name":"Dolphin3.0 R1 Mistral 24B (free)",
|
206 |
+
"cost":0.0,
|
207 |
+
"hf_id":"dphn\/Dolphin3.0-R1-Mistral-24B",
|
208 |
+
"size":23572423680.0,
|
209 |
+
"type":"open-source",
|
210 |
+
"license":"",
|
211 |
+
"creation_date":1738800000000.0,
|
212 |
+
"tasks":[
|
213 |
+
"translation_from",
|
214 |
+
"translation_to",
|
215 |
+
"classification",
|
216 |
+
"mmlu",
|
217 |
+
"arc",
|
218 |
+
"truthfulqa",
|
219 |
+
"mgsm"
|
220 |
+
]
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"id":"cohere\/command",
|
224 |
+
"name":"Command",
|
225 |
+
"provider_name":"Cohere",
|
226 |
+
"cost":2.0,
|
227 |
+
"hf_id":null,
|
228 |
+
"size":null,
|
229 |
+
"type":"closed-source",
|
230 |
+
"license":null,
|
231 |
+
"creation_date":1710374400000.0,
|
232 |
+
"tasks":[
|
233 |
+
"translation_from",
|
234 |
+
"translation_to",
|
235 |
+
"classification",
|
236 |
+
"mmlu",
|
237 |
+
"arc",
|
238 |
+
"truthfulqa",
|
239 |
+
"mgsm"
|
240 |
+
]
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"id":"cohere\/command-r",
|
244 |
+
"name":"Command R",
|
245 |
+
"provider_name":"Cohere",
|
246 |
+
"cost":1.5,
|
247 |
+
"hf_id":null,
|
248 |
+
"size":null,
|
249 |
+
"type":"closed-source",
|
250 |
+
"license":null,
|
251 |
+
"creation_date":1710374400000.0,
|
252 |
+
"tasks":[
|
253 |
+
"translation_from",
|
254 |
+
"translation_to",
|
255 |
+
"classification",
|
256 |
+
"mmlu",
|
257 |
+
"arc",
|
258 |
+
"truthfulqa",
|
259 |
+
"mgsm"
|
260 |
+
]
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"id":"cohere\/command-r7b-12-2024",
|
264 |
+
"name":"Command R7B (12-2024)",
|
265 |
+
"provider_name":"Cohere",
|
266 |
+
"cost":0.15,
|
267 |
+
"hf_id":null,
|
268 |
+
"size":null,
|
269 |
+
"type":"closed-source",
|
270 |
+
"license":null,
|
271 |
+
"creation_date":1734134400000.0,
|
272 |
+
"tasks":[
|
273 |
+
"translation_from",
|
274 |
+
"translation_to",
|
275 |
+
"classification",
|
276 |
+
"mmlu",
|
277 |
+
"arc",
|
278 |
+
"truthfulqa",
|
279 |
+
"mgsm"
|
280 |
+
]
|
281 |
+
},
|
282 |
{
|
283 |
"id":"deepseek\/deepseek-chat",
|
284 |
"name":"DeepSeek V3",
|
|
|
328 |
"size":684531386000.0,
|
329 |
"type":"open-source",
|
330 |
"license":"Mit",
|
331 |
+
"creation_date":1737331200000,
|
332 |
"tasks":[
|
333 |
"translation_from",
|
334 |
"translation_to",
|
|
|
379 |
"mgsm"
|
380 |
]
|
381 |
},
|
382 |
+
{
|
383 |
+
"id":"google\/gemini-2.0-flash-exp",
|
384 |
+
"name":"Gemini 2.0 Flash Experimental",
|
385 |
+
"provider_name":"Google",
|
386 |
+
"cost":0.0,
|
387 |
+
"hf_id":null,
|
388 |
+
"size":null,
|
389 |
+
"type":"closed-source",
|
390 |
+
"license":null,
|
391 |
+
"creation_date":1733875200000,
|
392 |
+
"tasks":[
|
393 |
+
"translation_from",
|
394 |
+
"translation_to",
|
395 |
+
"classification",
|
396 |
+
"mmlu",
|
397 |
+
"arc",
|
398 |
+
"truthfulqa",
|
399 |
+
"mgsm"
|
400 |
+
]
|
401 |
+
},
|
402 |
{
|
403 |
"id":"google\/gemini-2.0-flash-lite-001",
|
404 |
"name":"Gemini 2.0 Flash Lite",
|
|
|
439 |
"mgsm"
|
440 |
]
|
441 |
},
|
442 |
+
{
|
443 |
+
"id":"google\/gemini-2.5-flash-lite",
|
444 |
+
"name":"Gemini 2.5 Flash Lite",
|
445 |
+
"provider_name":"Google",
|
446 |
+
"cost":0.4,
|
447 |
+
"hf_id":null,
|
448 |
+
"size":null,
|
449 |
+
"type":"closed-source",
|
450 |
+
"license":null,
|
451 |
+
"creation_date":1753142400000,
|
452 |
+
"tasks":[
|
453 |
+
"translation_from",
|
454 |
+
"translation_to",
|
455 |
+
"classification",
|
456 |
+
"mmlu",
|
457 |
+
"arc",
|
458 |
+
"truthfulqa",
|
459 |
+
"mgsm"
|
460 |
+
]
|
461 |
+
},
|
462 |
{
|
463 |
"id":"google\/gemini-2.5-flash-lite-preview-06-17",
|
464 |
"name":"Gemini 2.5 Flash Lite Preview 06-17",
|
|
|
610 |
]
|
611 |
},
|
612 |
{
|
613 |
+
"id":"google\/gemini-pro-1.5",
|
614 |
+
"name":"Gemini 1.5 Pro",
|
615 |
"provider_name":"Google",
|
616 |
+
"cost":5.0,
|
617 |
+
"hf_id":null,
|
618 |
+
"size":null,
|
619 |
+
"type":"closed-source",
|
620 |
+
"license":null,
|
621 |
+
"creation_date":1712620800000.0,
|
622 |
"tasks":[
|
623 |
"translation_from",
|
624 |
"translation_to",
|
|
|
630 |
]
|
631 |
},
|
632 |
{
|
633 |
+
"id":"google\/gemma-2-9b-it",
|
634 |
+
"name":"Gemma 2 9B",
|
635 |
"provider_name":"Google",
|
636 |
+
"cost":0.0,
|
637 |
+
"hf_id":"google\/gemma-2-9b-it",
|
638 |
+
"size":9241705984.0,
|
639 |
+
"type":"open-source",
|
640 |
+
"license":"Gemma",
|
641 |
+
"creation_date":1719187200000.0,
|
642 |
"tasks":[
|
643 |
"translation_from",
|
644 |
+
"translation_to",
|
645 |
+
"classification",
|
646 |
+
"mmlu",
|
647 |
+
"arc",
|
648 |
+
"truthfulqa",
|
649 |
+
"mgsm"
|
650 |
]
|
651 |
},
|
652 |
{
|
653 |
+
"id":"google\/gemma-3-27b-it",
|
654 |
+
"name":"Gemma 3 27B",
|
655 |
+
"provider_name":"Google",
|
656 |
+
"cost":0.0,
|
657 |
+
"hf_id":"google\/gemma-3-27b-it",
|
658 |
+
"size":27432406640.0,
|
659 |
"type":"open-source",
|
660 |
+
"license":"Gemma",
|
661 |
+
"creation_date":1740787200000,
|
662 |
"tasks":[
|
663 |
"translation_from",
|
664 |
"translation_to",
|
|
|
670 |
]
|
671 |
},
|
672 |
{
|
673 |
+
"id":"google\/gemma-3n-e2b-it",
|
674 |
+
"name":"Gemma 3n 2B",
|
675 |
+
"provider_name":"Google",
|
676 |
+
"cost":0.0,
|
677 |
+
"hf_id":"google\/gemma-3n-E2B-it",
|
678 |
+
"size":5439438272.0,
|
679 |
"type":"open-source",
|
680 |
+
"license":"Gemma",
|
681 |
+
"creation_date":1749686400000,
|
682 |
"tasks":[
|
683 |
"translation_from",
|
684 |
"translation_to",
|
|
|
690 |
]
|
691 |
},
|
692 |
{
|
693 |
+
"id":"google\/gemma-3n-e4b-it",
|
694 |
+
"name":"Gemma 3n 4B",
|
695 |
+
"provider_name":"Google",
|
696 |
+
"cost":0.0,
|
697 |
+
"hf_id":"google\/gemma-3n-E4B-it",
|
698 |
+
"size":7849978192.0,
|
699 |
"type":"open-source",
|
700 |
+
"license":"Gemma",
|
701 |
+
"creation_date":1748908800000.0,
|
702 |
"tasks":[
|
703 |
"translation_from",
|
704 |
"translation_to",
|
|
|
710 |
]
|
711 |
},
|
712 |
{
|
713 |
+
"id":"google\/translate-v2",
|
714 |
+
"name":"Google Translate",
|
715 |
+
"provider_name":"Google",
|
716 |
+
"cost":20.0,
|
717 |
+
"hf_id":null,
|
718 |
+
"size":null,
|
719 |
+
"type":"closed-source",
|
720 |
+
"license":null,
|
721 |
+
"creation_date":null,
|
722 |
+
"tasks":[
|
723 |
+
"translation_from",
|
724 |
+
"translation_to"
|
725 |
+
]
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"id":"gryphe\/mythomax-l2-13b",
|
729 |
+
"name":"MythoMax 13B",
|
730 |
+
"provider_name":"MythoMax 13B",
|
731 |
+
"cost":0.06,
|
732 |
+
"hf_id":"Gryphe\/MythoMax-L2-13b",
|
733 |
+
"size":null,
|
734 |
+
"type":"open-source",
|
735 |
+
"license":"Other",
|
736 |
+
"creation_date":1691625600000,
|
737 |
+
"tasks":[
|
738 |
+
"translation_from",
|
739 |
+
"translation_to",
|
740 |
+
"classification",
|
741 |
+
"mmlu",
|
742 |
+
"arc",
|
743 |
+
"truthfulqa",
|
744 |
+
"mgsm"
|
745 |
+
]
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"id":"inception\/mercury",
|
749 |
+
"name":"Mercury",
|
750 |
+
"provider_name":"Inception",
|
751 |
+
"cost":1.0,
|
752 |
+
"hf_id":null,
|
753 |
+
"size":null,
|
754 |
+
"type":"closed-source",
|
755 |
+
"license":null,
|
756 |
+
"creation_date":1750896000000,
|
757 |
+
"tasks":[
|
758 |
+
"translation_from",
|
759 |
+
"translation_to",
|
760 |
+
"classification",
|
761 |
+
"mmlu",
|
762 |
+
"arc",
|
763 |
+
"truthfulqa",
|
764 |
+
"mgsm"
|
765 |
+
]
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"id":"inflection\/inflection-3-productivity",
|
769 |
+
"name":"Inflection 3 Productivity",
|
770 |
+
"provider_name":"Inflection",
|
771 |
+
"cost":10.0,
|
772 |
+
"hf_id":null,
|
773 |
+
"size":null,
|
774 |
+
"type":"closed-source",
|
775 |
+
"license":null,
|
776 |
+
"creation_date":1728604800000,
|
777 |
+
"tasks":[
|
778 |
+
"translation_from",
|
779 |
+
"translation_to",
|
780 |
+
"classification",
|
781 |
+
"mmlu",
|
782 |
+
"arc",
|
783 |
+
"truthfulqa",
|
784 |
+
"mgsm"
|
785 |
+
]
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"id":"meta-llama\/llama-3-70b-instruct",
|
789 |
+
"name":"Llama 3 70B Instruct",
|
790 |
+
"provider_name":"Meta",
|
791 |
+
"cost":0.4,
|
792 |
+
"hf_id":"meta-llama\/Meta-Llama-3-70B-Instruct",
|
793 |
+
"size":70553706496.0,
|
794 |
+
"type":"open-source",
|
795 |
+
"license":"Llama3",
|
796 |
+
"creation_date":1713312000000,
|
797 |
+
"tasks":[
|
798 |
+
"translation_from",
|
799 |
+
"translation_to",
|
800 |
+
"classification",
|
801 |
+
"mmlu",
|
802 |
+
"arc",
|
803 |
+
"truthfulqa",
|
804 |
+
"mgsm"
|
805 |
+
]
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"id":"meta-llama\/llama-3-8b-instruct",
|
809 |
+
"name":"Llama 3 8B Instruct",
|
810 |
+
"provider_name":"Meta",
|
811 |
+
"cost":0.06,
|
812 |
+
"hf_id":"meta-llama\/Meta-Llama-3-8B-Instruct",
|
813 |
+
"size":8030261248.0,
|
814 |
+
"type":"open-source",
|
815 |
+
"license":"Llama3",
|
816 |
+
"creation_date":1713312000000.0,
|
817 |
+
"tasks":[
|
818 |
+
"translation_from",
|
819 |
+
"translation_to",
|
820 |
+
"classification",
|
821 |
+
"mmlu",
|
822 |
+
"arc",
|
823 |
+
"truthfulqa",
|
824 |
+
"mgsm"
|
825 |
+
]
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"id":"meta-llama\/llama-3.1-405b-instruct",
|
829 |
+
"name":"Llama 3.1 405B Instruct",
|
830 |
+
"provider_name":"Meta",
|
831 |
+
"cost":0.0,
|
832 |
+
"hf_id":"meta-llama\/Llama-3.1-405B-Instruct",
|
833 |
+
"size":405853388800.0,
|
834 |
+
"type":"open-source",
|
835 |
+
"license":"Llama3.1",
|
836 |
+
"creation_date":1721088000000,
|
837 |
+
"tasks":[
|
838 |
+
"translation_from",
|
839 |
+
"translation_to",
|
840 |
+
"classification",
|
841 |
+
"mmlu",
|
842 |
+
"arc",
|
843 |
+
"truthfulqa",
|
844 |
+
"mgsm"
|
845 |
+
]
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"id":"meta-llama\/llama-3.1-70b-instruct",
|
849 |
+
"name":"Llama 3.1 70B Instruct",
|
850 |
+
"provider_name":"Meta",
|
851 |
+
"cost":0.28,
|
852 |
+
"hf_id":"meta-llama\/Llama-3.1-70B-Instruct",
|
853 |
+
"size":70553706496.0,
|
854 |
+
"type":"open-source",
|
855 |
+
"license":"Llama3.1",
|
856 |
+
"creation_date":1721088000000,
|
857 |
+
"tasks":[
|
858 |
+
"translation_from",
|
859 |
+
"translation_to",
|
860 |
+
"classification",
|
861 |
+
"mmlu",
|
862 |
+
"arc",
|
863 |
+
"truthfulqa",
|
864 |
+
"mgsm"
|
865 |
+
]
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"id":"meta-llama\/llama-3.1-8b-instruct",
|
869 |
+
"name":"Llama 3.1 8B Instruct",
|
870 |
+
"provider_name":"Meta",
|
871 |
"cost":0.0,
|
872 |
"hf_id":"meta-llama\/Llama-3.1-8B-Instruct",
|
873 |
"size":8030261248.0,
|
|
|
876 |
"creation_date":1721260800000.0,
|
877 |
"tasks":null
|
878 |
},
|
879 |
+
{
|
880 |
+
"id":"meta-llama\/llama-3.2-11b-vision-instruct",
|
881 |
+
"name":"Llama 3.2 11B Vision Instruct",
|
882 |
+
"provider_name":"Meta",
|
883 |
+
"cost":0.0,
|
884 |
+
"hf_id":"meta-llama\/Llama-3.2-11B-Vision-Instruct",
|
885 |
+
"size":10670220835.0,
|
886 |
+
"type":"open-source",
|
887 |
+
"license":"Llama3.2",
|
888 |
+
"creation_date":1726617600000,
|
889 |
+
"tasks":[
|
890 |
+
"translation_from",
|
891 |
+
"translation_to",
|
892 |
+
"classification",
|
893 |
+
"mmlu",
|
894 |
+
"arc",
|
895 |
+
"truthfulqa",
|
896 |
+
"mgsm"
|
897 |
+
]
|
898 |
+
},
|
899 |
{
|
900 |
"id":"meta-llama\/llama-3.2-1b-instruct",
|
901 |
"name":"Llama 3.2 1B Instruct",
|
|
|
908 |
"creation_date":1726617600000.0,
|
909 |
"tasks":null
|
910 |
},
|
911 |
+
{
|
912 |
+
"id":"meta-llama\/llama-3.2-3b-instruct",
|
913 |
+
"name":"Llama 3.2 3B Instruct",
|
914 |
+
"provider_name":"Meta",
|
915 |
+
"cost":0.0,
|
916 |
+
"hf_id":"meta-llama\/Llama-3.2-3B-Instruct",
|
917 |
+
"size":3212749824.0,
|
918 |
+
"type":"open-source",
|
919 |
+
"license":"Llama3.2",
|
920 |
+
"creation_date":1726617600000.0,
|
921 |
+
"tasks":[
|
922 |
+
"translation_from",
|
923 |
+
"translation_to",
|
924 |
+
"classification",
|
925 |
+
"mmlu",
|
926 |
+
"arc",
|
927 |
+
"truthfulqa",
|
928 |
+
"mgsm"
|
929 |
+
]
|
930 |
+
},
|
931 |
{
|
932 |
"id":"meta-llama\/llama-3.3-70b-instruct",
|
933 |
"name":"Llama 3.3 70B Instruct",
|
|
|
969 |
]
|
970 |
},
|
971 |
{
|
972 |
+
"id":"meta-llama\/llama-guard-4-12b",
|
973 |
+
"name":"Llama Guard 4 12B",
|
974 |
+
"provider_name":"Meta",
|
975 |
+
"cost":0.05,
|
976 |
+
"hf_id":"meta-llama\/Llama-Guard-4-12B",
|
977 |
+
"size":12001097216.0,
|
978 |
+
"type":"open-source",
|
979 |
+
"license":"Other",
|
980 |
+
"creation_date":1745366400000,
|
981 |
+
"tasks":[
|
982 |
+
"translation_from",
|
983 |
+
"translation_to",
|
984 |
+
"classification",
|
985 |
+
"mmlu",
|
986 |
+
"arc",
|
987 |
+
"truthfulqa",
|
988 |
+
"mgsm"
|
989 |
+
]
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"id":"microsoft\/phi-3.5-mini-128k-instruct",
|
993 |
+
"name":"Phi-3.5 Mini 128K Instruct",
|
994 |
+
"provider_name":"Microsoft",
|
995 |
+
"cost":0.1,
|
996 |
+
"hf_id":"microsoft\/Phi-3.5-mini-instruct",
|
997 |
+
"size":3821079552.0,
|
998 |
+
"type":"open-source",
|
999 |
+
"license":"Mit",
|
1000 |
+
"creation_date":1723766400000.0,
|
1001 |
+
"tasks":[
|
1002 |
+
"translation_from",
|
1003 |
+
"translation_to",
|
1004 |
+
"classification",
|
1005 |
+
"mmlu",
|
1006 |
+
"arc",
|
1007 |
+
"truthfulqa",
|
1008 |
+
"mgsm"
|
1009 |
+
]
|
1010 |
+
},
|
1011 |
+
{
|
1012 |
+
"id":"microsoft\/phi-4",
|
1013 |
+
"name":"Phi 4",
|
1014 |
+
"provider_name":"Microsoft",
|
1015 |
+
"cost":0.14,
|
1016 |
+
"hf_id":"microsoft\/phi-4",
|
1017 |
+
"size":14659507200.0,
|
1018 |
+
"type":"open-source",
|
1019 |
+
"license":"Mit",
|
1020 |
+
"creation_date":1733875200000,
|
1021 |
+
"tasks":[
|
1022 |
+
"translation_from",
|
1023 |
+
"translation_to",
|
1024 |
+
"classification",
|
1025 |
+
"mmlu",
|
1026 |
+
"arc",
|
1027 |
+
"truthfulqa",
|
1028 |
+
"mgsm"
|
1029 |
+
]
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"id":"microsoft\/phi-4-multimodal-instruct",
|
1033 |
+
"name":"Phi 4 Multimodal Instruct",
|
1034 |
+
"provider_name":"Microsoft",
|
1035 |
+
"cost":0.1,
|
1036 |
+
"hf_id":"microsoft\/Phi-4-multimodal-instruct",
|
1037 |
+
"size":5574460384.0,
|
1038 |
+
"type":"open-source",
|
1039 |
+
"license":"Mit",
|
1040 |
+
"creation_date":1740355200000,
|
1041 |
+
"tasks":[
|
1042 |
+
"translation_from",
|
1043 |
+
"translation_to",
|
1044 |
+
"classification",
|
1045 |
+
"mmlu",
|
1046 |
+
"arc",
|
1047 |
+
"truthfulqa",
|
1048 |
+
"mgsm"
|
1049 |
+
]
|
1050 |
+
},
|
1051 |
+
{
|
1052 |
+
"id":"microsoft\/wizardlm-2-8x22b",
|
1053 |
+
"name":"WizardLM-2 8x22B",
|
1054 |
+
"provider_name":"WizardLM-2 8x22B",
|
1055 |
+
"cost":0.48,
|
1056 |
+
"hf_id":null,
|
1057 |
+
"size":null,
|
1058 |
+
"type":"closed-source",
|
1059 |
+
"license":null,
|
1060 |
+
"creation_date":1713225600000,
|
1061 |
+
"tasks":[
|
1062 |
+
"translation_from",
|
1063 |
+
"translation_to",
|
1064 |
+
"classification",
|
1065 |
+
"mmlu",
|
1066 |
+
"arc",
|
1067 |
+
"truthfulqa",
|
1068 |
+
"mgsm"
|
1069 |
+
]
|
1070 |
+
},
|
1071 |
+
{
|
1072 |
+
"id":"mistralai\/codestral-2501",
|
1073 |
+
"name":"Codestral 2501",
|
1074 |
+
"provider_name":"Mistral",
|
1075 |
+
"cost":0.9,
|
1076 |
+
"hf_id":null,
|
1077 |
+
"size":null,
|
1078 |
+
"type":"closed-source",
|
1079 |
+
"license":null,
|
1080 |
+
"creation_date":1736812800000.0,
|
1081 |
+
"tasks":[
|
1082 |
+
"translation_from",
|
1083 |
+
"translation_to",
|
1084 |
+
"classification",
|
1085 |
+
"mmlu",
|
1086 |
+
"arc",
|
1087 |
+
"truthfulqa",
|
1088 |
+
"mgsm"
|
1089 |
+
]
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"id":"mistralai\/devstral-small-2505",
|
1093 |
+
"name":"Devstral Small 2505",
|
1094 |
+
"provider_name":"Mistral",
|
1095 |
+
"cost":0.0,
|
1096 |
+
"hf_id":"mistralai\/Devstral-Small-2505",
|
1097 |
+
"size":23572403200.0,
|
1098 |
+
"type":"open-source",
|
1099 |
+
"license":"Apache 2.0",
|
1100 |
+
"creation_date":1747008000000.0,
|
1101 |
+
"tasks":[
|
1102 |
+
"translation_from",
|
1103 |
+
"translation_to",
|
1104 |
+
"classification",
|
1105 |
+
"mmlu",
|
1106 |
+
"arc",
|
1107 |
+
"truthfulqa",
|
1108 |
+
"mgsm"
|
1109 |
+
]
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"id":"mistralai\/magistral-small-2506",
|
1113 |
+
"name":"Magistral Small 2506",
|
1114 |
+
"provider_name":"Mistral",
|
1115 |
+
"cost":1.5,
|
1116 |
+
"hf_id":"mistralai\/Magistral-Small-2506",
|
1117 |
+
"size":23572403200.0,
|
1118 |
+
"type":"open-source",
|
1119 |
+
"license":"Apache 2.0",
|
1120 |
+
"creation_date":1748995200000.0,
|
1121 |
+
"tasks":[
|
1122 |
+
"translation_from",
|
1123 |
+
"translation_to",
|
1124 |
+
"classification",
|
1125 |
+
"mmlu",
|
1126 |
+
"arc",
|
1127 |
+
"truthfulqa",
|
1128 |
+
"mgsm"
|
1129 |
+
]
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"id":"mistralai\/ministral-8b",
|
1133 |
+
"name":"Ministral 8B",
|
1134 |
+
"provider_name":"Mistral",
|
1135 |
+
"cost":0.1,
|
1136 |
+
"hf_id":null,
|
1137 |
+
"size":null,
|
1138 |
+
"type":"closed-source",
|
1139 |
+
"license":null,
|
1140 |
+
"creation_date":1729123200000,
|
1141 |
+
"tasks":[
|
1142 |
+
"translation_from",
|
1143 |
+
"translation_to",
|
1144 |
+
"classification",
|
1145 |
+
"mmlu",
|
1146 |
+
"arc",
|
1147 |
+
"truthfulqa",
|
1148 |
+
"mgsm"
|
1149 |
+
]
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"id":"mistralai\/mistral-7b-instruct",
|
1153 |
+
"name":"Mistral 7B Instruct",
|
1154 |
+
"provider_name":"Mistral",
|
1155 |
+
"cost":0.0,
|
1156 |
+
"hf_id":"mistralai\/Mistral-7B-Instruct-v0.3",
|
1157 |
+
"size":7248023552.0,
|
1158 |
+
"type":"open-source",
|
1159 |
+
"license":"Apache 2.0",
|
1160 |
+
"creation_date":1716336000000.0,
|
1161 |
+
"tasks":[
|
1162 |
+
"translation_from",
|
1163 |
+
"translation_to",
|
1164 |
+
"classification",
|
1165 |
+
"mmlu",
|
1166 |
+
"arc",
|
1167 |
+
"truthfulqa",
|
1168 |
+
"mgsm"
|
1169 |
+
]
|
1170 |
+
},
|
1171 |
+
{
|
1172 |
+
"id":"mistralai\/mistral-medium-3",
|
1173 |
+
"name":"Mistral Medium 3",
|
1174 |
+
"provider_name":"Mistral",
|
1175 |
+
"cost":2.0,
|
1176 |
+
"hf_id":null,
|
1177 |
+
"size":null,
|
1178 |
+
"type":"closed-source",
|
1179 |
+
"license":null,
|
1180 |
+
"creation_date":1746576000000.0,
|
1181 |
+
"tasks":[
|
1182 |
+
"translation_from",
|
1183 |
+
"translation_to",
|
1184 |
+
"classification",
|
1185 |
+
"mmlu",
|
1186 |
+
"arc",
|
1187 |
+
"truthfulqa",
|
1188 |
+
"mgsm"
|
1189 |
+
]
|
1190 |
+
},
|
1191 |
+
{
|
1192 |
+
"id":"mistralai\/mistral-nemo",
|
1193 |
+
"name":"Mistral Nemo",
|
1194 |
+
"provider_name":"Mistral",
|
1195 |
+
"cost":0.0,
|
1196 |
+
"hf_id":"mistralai\/Mistral-Nemo-Instruct-2407",
|
1197 |
+
"size":12247782400.0,
|
1198 |
+
"type":"open-source",
|
1199 |
+
"license":"Apache 2.0",
|
1200 |
+
"creation_date":1721174400000,
|
1201 |
+
"tasks":[
|
1202 |
+
"translation_from",
|
1203 |
+
"translation_to",
|
1204 |
+
"classification",
|
1205 |
+
"mmlu",
|
1206 |
+
"arc",
|
1207 |
+
"truthfulqa",
|
1208 |
+
"mgsm"
|
1209 |
+
]
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"id":"mistralai\/mistral-saba",
|
1213 |
+
"name":"Saba",
|
1214 |
+
"provider_name":"Mistral",
|
1215 |
+
"cost":0.6,
|
1216 |
+
"hf_id":null,
|
1217 |
+
"size":null,
|
1218 |
+
"type":"closed-source",
|
1219 |
+
"license":null,
|
1220 |
+
"creation_date":1739750400000,
|
1221 |
+
"tasks":[
|
1222 |
+
"translation_from",
|
1223 |
+
"translation_to",
|
1224 |
+
"classification",
|
1225 |
+
"mmlu",
|
1226 |
+
"arc",
|
1227 |
+
"truthfulqa",
|
1228 |
+
"mgsm"
|
1229 |
+
]
|
1230 |
+
},
|
1231 |
+
{
|
1232 |
+
"id":"mistralai\/mistral-small-3.1-24b-instruct",
|
1233 |
+
"name":"Mistral Small 3.1 24B",
|
1234 |
+
"provider_name":"Mistral",
|
1235 |
+
"cost":0.0,
|
1236 |
+
"hf_id":"mistralai\/Mistral-Small-3.1-24B-Instruct-2503",
|
1237 |
+
"size":24011361280.0,
|
1238 |
+
"type":"open-source",
|
1239 |
+
"license":"Apache 2.0",
|
1240 |
+
"creation_date":1741651200000,
|
1241 |
+
"tasks":[
|
1242 |
+
"translation_from",
|
1243 |
+
"translation_to",
|
1244 |
+
"classification",
|
1245 |
+
"mmlu",
|
1246 |
+
"arc",
|
1247 |
+
"truthfulqa",
|
1248 |
+
"mgsm"
|
1249 |
+
]
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"id":"mistralai\/mistral-tiny",
|
1253 |
+
"name":"Mistral Tiny",
|
1254 |
+
"provider_name":"Mistral Tiny",
|
1255 |
+
"cost":0.25,
|
1256 |
+
"hf_id":null,
|
1257 |
+
"size":null,
|
1258 |
+
"type":"closed-source",
|
1259 |
+
"license":null,
|
1260 |
+
"creation_date":1704844800000.0,
|
1261 |
"tasks":[
|
1262 |
"translation_from",
|
1263 |
"translation_to",
|
|
|
1269 |
]
|
1270 |
},
|
1271 |
{
|
1272 |
+
"id":"mistralai\/mixtral-8x22b-instruct",
|
1273 |
+
"name":"Mixtral 8x22B Instruct",
|
1274 |
+
"provider_name":"Mistral",
|
1275 |
+
"cost":0.9,
|
1276 |
+
"hf_id":"mistralai\/Mixtral-8x22B-Instruct-v0.1",
|
1277 |
+
"size":140630071296.0,
|
1278 |
"type":"open-source",
|
1279 |
+
"license":"Apache 2.0",
|
1280 |
+
"creation_date":1713225600000.0,
|
1281 |
"tasks":[
|
1282 |
"translation_from",
|
1283 |
"translation_to",
|
|
|
1289 |
]
|
1290 |
},
|
1291 |
{
|
1292 |
+
"id":"mistralai\/pixtral-12b",
|
1293 |
+
"name":"Pixtral 12B",
|
1294 |
"provider_name":"Mistral",
|
1295 |
+
"cost":0.1,
|
1296 |
+
"hf_id":"mistralai\/Pixtral-12B-2409",
|
1297 |
+
"size":null,
|
1298 |
"type":"open-source",
|
1299 |
"license":"Apache 2.0",
|
1300 |
+
"creation_date":1726012800000.0,
|
1301 |
"tasks":[
|
1302 |
"translation_from",
|
1303 |
"translation_to",
|
|
|
1309 |
]
|
1310 |
},
|
1311 |
{
|
1312 |
+
"id":"moonshotai\/kimi-k2",
|
1313 |
+
"name":"Kimi K2",
|
1314 |
+
"provider_name":"MoonshotAI",
|
1315 |
+
"cost":0.0,
|
1316 |
+
"hf_id":"moonshotai\/Kimi-K2-Instruct",
|
1317 |
"size":null,
|
1318 |
+
"type":"open-source",
|
1319 |
+
"license":"Other",
|
1320 |
+
"creation_date":1752192000000,
|
1321 |
"tasks":[
|
1322 |
"translation_from",
|
1323 |
"translation_to",
|
|
|
1329 |
]
|
1330 |
},
|
1331 |
{
|
1332 |
+
"id":"morph\/morph-v3-fast",
|
1333 |
+
"name":"Morph V3 Fast",
|
1334 |
+
"provider_name":"Morph",
|
1335 |
+
"cost":2.7,
|
1336 |
+
"hf_id":null,
|
1337 |
+
"size":null,
|
1338 |
+
"type":"closed-source",
|
1339 |
+
"license":null,
|
1340 |
+
"creation_date":1751846400000.0,
|
1341 |
"tasks":[
|
1342 |
"translation_from",
|
1343 |
"translation_to",
|
|
|
1428 |
"mgsm"
|
1429 |
]
|
1430 |
},
|
1431 |
+
{
|
1432 |
+
"id":"openai\/gpt-4o-2024-11-20",
|
1433 |
+
"name":"GPT-4o (2024-11-20)",
|
1434 |
+
"provider_name":"OpenAI",
|
1435 |
+
"cost":10.0,
|
1436 |
+
"hf_id":null,
|
1437 |
+
"size":null,
|
1438 |
+
"type":"closed-source",
|
1439 |
+
"license":null,
|
1440 |
+
"creation_date":1732060800000,
|
1441 |
+
"tasks":[
|
1442 |
+
"translation_from",
|
1443 |
+
"translation_to",
|
1444 |
+
"classification",
|
1445 |
+
"mmlu",
|
1446 |
+
"arc",
|
1447 |
+
"truthfulqa",
|
1448 |
+
"mgsm"
|
1449 |
+
]
|
1450 |
+
},
|
1451 |
{
|
1452 |
"id":"openai\/gpt-4o-mini",
|
1453 |
"name":"GPT-4o-mini",
|
|
|
1468 |
"mgsm"
|
1469 |
]
|
1470 |
},
|
1471 |
+
{
|
1472 |
+
"id":"perplexity\/r1-1776",
|
1473 |
+
"name":"R1 1776",
|
1474 |
+
"provider_name":"Perplexity",
|
1475 |
+
"cost":8.0,
|
1476 |
+
"hf_id":"perplexity-ai\/r1-1776",
|
1477 |
+
"size":671026419200.0,
|
1478 |
+
"type":"open-source",
|
1479 |
+
"license":"Mit",
|
1480 |
+
"creation_date":1739836800000.0,
|
1481 |
+
"tasks":[
|
1482 |
+
"translation_from",
|
1483 |
+
"translation_to",
|
1484 |
+
"classification",
|
1485 |
+
"mmlu",
|
1486 |
+
"arc",
|
1487 |
+
"truthfulqa",
|
1488 |
+
"mgsm"
|
1489 |
+
]
|
1490 |
+
},
|
1491 |
+
{
|
1492 |
+
"id":"qwen\/qwen-2.5-72b-instruct",
|
1493 |
+
"name":"Qwen2.5 72B Instruct",
|
1494 |
+
"provider_name":"Qwen2.5 72B Instruct (free)",
|
1495 |
+
"cost":0.0,
|
1496 |
+
"hf_id":"Qwen\/Qwen2.5-72B-Instruct",
|
1497 |
+
"size":72706203648.0,
|
1498 |
+
"type":"open-source",
|
1499 |
+
"license":"Other",
|
1500 |
+
"creation_date":1726444800000.0,
|
1501 |
+
"tasks":[
|
1502 |
+
"translation_from",
|
1503 |
+
"translation_to",
|
1504 |
+
"classification",
|
1505 |
+
"mmlu",
|
1506 |
+
"arc",
|
1507 |
+
"truthfulqa",
|
1508 |
+
"mgsm"
|
1509 |
+
]
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"id":"qwen\/qwen-2.5-7b-instruct",
|
1513 |
+
"name":"Qwen2.5 7B Instruct",
|
1514 |
+
"provider_name":"Qwen2.5 7B Instruct",
|
1515 |
+
"cost":0.1,
|
1516 |
+
"hf_id":"Qwen\/Qwen2.5-7B-Instruct",
|
1517 |
+
"size":7615616512.0,
|
1518 |
+
"type":"open-source",
|
1519 |
+
"license":"Apache 2.0",
|
1520 |
+
"creation_date":1726444800000,
|
1521 |
+
"tasks":[
|
1522 |
+
"translation_from",
|
1523 |
+
"translation_to",
|
1524 |
+
"classification",
|
1525 |
+
"mmlu",
|
1526 |
+
"arc",
|
1527 |
+
"truthfulqa",
|
1528 |
+
"mgsm"
|
1529 |
+
]
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"id":"qwen\/qwen-2.5-coder-32b-instruct",
|
1533 |
+
"name":"Qwen2.5 Coder 32B Instruct",
|
1534 |
+
"provider_name":"Qwen2.5 Coder 32B Instruct (free)",
|
1535 |
+
"cost":0.0,
|
1536 |
+
"hf_id":"Qwen\/Qwen2.5-Coder-32B-Instruct",
|
1537 |
+
"size":32763876352.0,
|
1538 |
+
"type":"open-source",
|
1539 |
+
"license":"Apache 2.0",
|
1540 |
+
"creation_date":1730851200000.0,
|
1541 |
+
"tasks":[
|
1542 |
+
"translation_from",
|
1543 |
+
"translation_to",
|
1544 |
+
"classification",
|
1545 |
+
"mmlu",
|
1546 |
+
"arc",
|
1547 |
+
"truthfulqa",
|
1548 |
+
"mgsm"
|
1549 |
+
]
|
1550 |
+
},
|
1551 |
{
|
1552 |
"id":"qwen\/qwen3-235b-a22b",
|
1553 |
"name":"Qwen3 235B A22B",
|
|
|
1607 |
"truthfulqa",
|
1608 |
"mgsm"
|
1609 |
]
|
1610 |
+
},
|
1611 |
+
{
|
1612 |
+
"id":"scb10x\/llama3.1-typhoon2-70b-instruct",
|
1613 |
+
"name":"Typhoon2 70B Instruct",
|
1614 |
+
"provider_name":"Typhoon2 70B Instruct",
|
1615 |
+
"cost":0.88,
|
1616 |
+
"hf_id":"scb10x\/llama3.1-typhoon2-70b-instruct",
|
1617 |
+
"size":70553706496.0,
|
1618 |
+
"type":"open-source",
|
1619 |
+
"license":"Llama3.1",
|
1620 |
+
"creation_date":1734220800000.0,
|
1621 |
+
"tasks":[
|
1622 |
+
"translation_from",
|
1623 |
+
"translation_to",
|
1624 |
+
"classification",
|
1625 |
+
"mmlu",
|
1626 |
+
"arc",
|
1627 |
+
"truthfulqa",
|
1628 |
+
"mgsm"
|
1629 |
+
]
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"id":"sophosympatheia\/midnight-rose-70b",
|
1633 |
+
"name":"Midnight Rose 70B",
|
1634 |
+
"provider_name":"Midnight Rose 70B",
|
1635 |
+
"cost":0.8,
|
1636 |
+
"hf_id":"sophosympatheia\/Midnight-Rose-70B-v2.0.3",
|
1637 |
+
"size":68976648192.0,
|
1638 |
+
"type":"open-source",
|
1639 |
+
"license":"Llama2",
|
1640 |
+
"creation_date":1707004800000,
|
1641 |
+
"tasks":[
|
1642 |
+
"translation_from",
|
1643 |
+
"translation_to",
|
1644 |
+
"classification",
|
1645 |
+
"mmlu",
|
1646 |
+
"arc",
|
1647 |
+
"truthfulqa",
|
1648 |
+
"mgsm"
|
1649 |
+
]
|
1650 |
+
},
|
1651 |
+
{
|
1652 |
+
"id":"switchpoint\/router",
|
1653 |
+
"name":"Switchpoint Router",
|
1654 |
+
"provider_name":"Switchpoint Router",
|
1655 |
+
"cost":3.4,
|
1656 |
+
"hf_id":null,
|
1657 |
+
"size":null,
|
1658 |
+
"type":"closed-source",
|
1659 |
+
"license":null,
|
1660 |
+
"creation_date":1752192000000.0,
|
1661 |
+
"tasks":[
|
1662 |
+
"translation_from",
|
1663 |
+
"translation_to",
|
1664 |
+
"classification",
|
1665 |
+
"mmlu",
|
1666 |
+
"arc",
|
1667 |
+
"truthfulqa",
|
1668 |
+
"mgsm"
|
1669 |
+
]
|
1670 |
+
},
|
1671 |
+
{
|
1672 |
+
"id":"thedrummer\/anubis-pro-105b-v1",
|
1673 |
+
"name":"Anubis Pro 105B V1",
|
1674 |
+
"provider_name":"TheDrummer",
|
1675 |
+
"cost":1.0,
|
1676 |
+
"hf_id":"TheDrummer\/Anubis-Pro-105B-v1",
|
1677 |
+
"size":104779882496.0,
|
1678 |
+
"type":"open-source",
|
1679 |
+
"license":"Other",
|
1680 |
+
"creation_date":1738454400000.0,
|
1681 |
+
"tasks":[
|
1682 |
+
"translation_from",
|
1683 |
+
"translation_to",
|
1684 |
+
"classification",
|
1685 |
+
"mmlu",
|
1686 |
+
"arc",
|
1687 |
+
"truthfulqa",
|
1688 |
+
"mgsm"
|
1689 |
+
]
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"id":"thedrummer\/skyfall-36b-v2",
|
1693 |
+
"name":"Skyfall 36B V2",
|
1694 |
+
"provider_name":"TheDrummer",
|
1695 |
+
"cost":0.07,
|
1696 |
+
"hf_id":"TheDrummer\/Skyfall-36B-v2",
|
1697 |
+
"size":36910535680.0,
|
1698 |
+
"type":"open-source",
|
1699 |
+
"license":"Other",
|
1700 |
+
"creation_date":1738540800000.0,
|
1701 |
+
"tasks":[
|
1702 |
+
"translation_from",
|
1703 |
+
"translation_to",
|
1704 |
+
"classification",
|
1705 |
+
"mmlu",
|
1706 |
+
"arc",
|
1707 |
+
"truthfulqa",
|
1708 |
+
"mgsm"
|
1709 |
+
]
|
1710 |
+
},
|
1711 |
+
{
|
1712 |
+
"id":"thedrummer\/unslopnemo-12b",
|
1713 |
+
"name":"UnslopNemo 12B",
|
1714 |
+
"provider_name":"TheDrummer",
|
1715 |
+
"cost":0.4,
|
1716 |
+
"hf_id":"TheDrummer\/UnslopNemo-12B-v4.1",
|
1717 |
+
"size":12247782400.0,
|
1718 |
+
"type":"open-source",
|
1719 |
+
"license":"",
|
1720 |
+
"creation_date":1729641600000.0,
|
1721 |
+
"tasks":[
|
1722 |
+
"translation_from",
|
1723 |
+
"translation_to",
|
1724 |
+
"classification",
|
1725 |
+
"mmlu",
|
1726 |
+
"arc",
|
1727 |
+
"truthfulqa",
|
1728 |
+
"mgsm"
|
1729 |
+
]
|
1730 |
+
},
|
1731 |
+
{
|
1732 |
+
"id":"thedrummer\/valkyrie-49b-v1",
|
1733 |
+
"name":"Valkyrie 49B V1",
|
1734 |
+
"provider_name":"TheDrummer",
|
1735 |
+
"cost":1.0,
|
1736 |
+
"hf_id":"TheDrummer\/Valkyrie-49B-v1",
|
1737 |
+
"size":49867145216.0,
|
1738 |
+
"type":"open-source",
|
1739 |
+
"license":"",
|
1740 |
+
"creation_date":1747440000000,
|
1741 |
+
"tasks":[
|
1742 |
+
"translation_from",
|
1743 |
+
"translation_to",
|
1744 |
+
"classification",
|
1745 |
+
"mmlu",
|
1746 |
+
"arc",
|
1747 |
+
"truthfulqa",
|
1748 |
+
"mgsm"
|
1749 |
+
]
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"id":"x-ai\/grok-3-beta",
|
1753 |
+
"name":"Grok 3 Beta",
|
1754 |
+
"provider_name":"xAI",
|
1755 |
+
"cost":15.0,
|
1756 |
+
"hf_id":null,
|
1757 |
+
"size":null,
|
1758 |
+
"type":"closed-source",
|
1759 |
+
"license":null,
|
1760 |
+
"creation_date":1744156800000.0,
|
1761 |
+
"tasks":[
|
1762 |
+
"translation_from",
|
1763 |
+
"translation_to",
|
1764 |
+
"classification",
|
1765 |
+
"mmlu",
|
1766 |
+
"arc",
|
1767 |
+
"truthfulqa",
|
1768 |
+
"mgsm"
|
1769 |
+
]
|
1770 |
+
},
|
1771 |
+
{
|
1772 |
+
"id":"z-ai\/glm-4.5-air",
|
1773 |
+
"name":"GLM 4.5 Air",
|
1774 |
+
"provider_name":"Z.AI",
|
1775 |
+
"cost":0.0,
|
1776 |
+
"hf_id":"zai-org\/GLM-4.5-Air",
|
1777 |
+
"size":110468824832.0,
|
1778 |
+
"type":"open-source",
|
1779 |
+
"license":"Mit",
|
1780 |
+
"creation_date":1752969600000.0,
|
1781 |
+
"tasks":[
|
1782 |
+
"translation_from",
|
1783 |
+
"translation_to",
|
1784 |
+
"classification",
|
1785 |
+
"mmlu",
|
1786 |
+
"arc",
|
1787 |
+
"truthfulqa",
|
1788 |
+
"mgsm"
|
1789 |
+
]
|
1790 |
}
|
1791 |
]
|
pyproject.toml
CHANGED
@@ -36,6 +36,9 @@ dev = [
|
|
36 |
"tqdm>=4.67.1",
|
37 |
"transformers>=4.51.3",
|
38 |
]
|
|
|
|
|
|
|
39 |
|
40 |
[dependency-groups]
|
41 |
dev = [
|
@@ -44,3 +47,10 @@ dev = [
|
|
44 |
"scipy>=1.16.0",
|
45 |
"seaborn>=0.13.2",
|
46 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
"tqdm>=4.67.1",
|
37 |
"transformers>=4.51.3",
|
38 |
]
|
39 |
+
cloud = [
|
40 |
+
"google-cloud-storage>=3.2.0",
|
41 |
+
]
|
42 |
|
43 |
[dependency-groups]
|
44 |
dev = [
|
|
|
47 |
"scipy>=1.16.0",
|
48 |
"seaborn>=0.13.2",
|
49 |
]
|
50 |
+
|
51 |
+
[build-system]
|
52 |
+
requires = ["hatchling"]
|
53 |
+
build-backend = "hatchling.build"
|
54 |
+
|
55 |
+
[tool.hatch.build.targets.wheel]
|
56 |
+
packages = ["evals"]
|
results.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
system_architecture_diagram.md
CHANGED
@@ -17,11 +17,15 @@ flowchart TD
|
|
17 |
G --> H["Enriched Model DataFrame"]
|
18 |
H --> |Save| I[models.json]
|
19 |
|
|
|
|
|
|
|
|
|
20 |
%% Language Data
|
21 |
J["languages.py<br/>BCP-47 + Population"] --> K["Top 100 Languages"]
|
22 |
|
23 |
-
%% Task Registry
|
24 |
-
L["tasks.py<br/>7 Evaluation Tasks"] --> M["Task Functions"]
|
25 |
M --> M1["translation_from/to<br/>BLEU + ChrF"]
|
26 |
M --> M2["classification<br/>Accuracy"]
|
27 |
M --> M3["mmlu<br/>Accuracy"]
|
@@ -29,39 +33,47 @@ flowchart TD
|
|
29 |
M --> M5["truthfulqa<br/>Accuracy"]
|
30 |
M --> M6["mgsm<br/>Accuracy"]
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
%% Evaluation Pipeline
|
33 |
-
|
34 |
K --> |"languages bcp_47"| N
|
35 |
L --> |"tasks.items"| N
|
36 |
N --> |"Filter by model.tasks"| O["Valid Combinations<br/>Model Γ Language Γ Task"]
|
37 |
-
O --> |"10 samples each"| P["Evaluation Execution"]
|
38 |
-
|
39 |
-
%% Task Execution
|
40 |
-
P --> Q1[translate_and_evaluate]
|
41 |
-
P --> Q2[classify_and_evaluate]
|
42 |
-
P --> Q3[mmlu_and_evaluate]
|
43 |
-
P --> Q4[arc_and_evaluate]
|
44 |
-
P --> Q5[truthfulqa_and_evaluate]
|
45 |
-
P --> Q6[mgsm_and_evaluate]
|
46 |
-
|
47 |
-
%% API Calls
|
48 |
-
Q1 --> |"complete() API"| R["OpenRouter<br/>Model Inference"]
|
49 |
-
Q2 --> |"complete() API"| R
|
50 |
-
Q3 --> |"complete() API"| R
|
51 |
-
Q4 --> |"complete() API"| R
|
52 |
-
Q5 --> |"complete() API"| R
|
53 |
-
Q6 --> |"complete() API"| R
|
54 |
-
|
55 |
-
%% Results Processing
|
56 |
-
R --> |Scores| S["Result Aggregation<br/>Mean by model+lang+task"]
|
57 |
S --> |Save| T[results.json]
|
58 |
|
59 |
-
%% Backend & Frontend
|
60 |
T --> |Read| U[backend.py]
|
61 |
I --> |Read| U
|
62 |
-
U --> |make_model_table| V["Model Rankings"]
|
63 |
U --> |make_country_table| W["Country Aggregation"]
|
64 |
-
U --> |"API Endpoint"| X["FastAPI /api/data"]
|
65 |
X --> |"JSON Response"| Y["Frontend React App"]
|
66 |
|
67 |
%% UI Components
|
@@ -70,13 +82,13 @@ flowchart TD
|
|
70 |
Y --> Z3["LanguageTable.js<br/>Language Coverage"]
|
71 |
Y --> Z4["DatasetTable.js<br/>Task Performance"]
|
72 |
|
73 |
-
%% Data Sources
|
74 |
subgraph DS ["Data Sources"]
|
75 |
-
DS1["Flores-200<br/>Translation Sentences"]
|
76 |
-
DS2["MMLU/AfriMMLU<br/>Knowledge QA"]
|
77 |
-
DS3["ARC<br/>Science Reasoning"]
|
78 |
-
DS4["TruthfulQA<br/>Truthfulness"]
|
79 |
-
DS5["MGSM<br/>Math Problems"]
|
80 |
end
|
81 |
|
82 |
DS1 --> Q1
|
@@ -85,57 +97,79 @@ flowchart TD
|
|
85 |
DS4 --> Q5
|
86 |
DS5 --> Q6
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
class A1,A2,A3,A4 modelSource
|
96 |
class Q1,Q2,Q3,Q4,Q5,Q6,P evaluation
|
97 |
class R,F,G,X api
|
98 |
class T,I storage
|
99 |
class Y,Z1,Z2,Z3,Z4 frontend
|
|
|
100 |
```
|
101 |
|
102 |
## Architecture Components
|
103 |
|
104 |
-
### π΅ Model Discovery (
|
105 |
- **Static Curated Models**: Handpicked important models for comprehensive evaluation
|
106 |
- **Dynamic Popular Models**: Real-time discovery of trending models via web scraping
|
107 |
- **Quality Control**: Blocklist for problematic or incompatible models
|
|
|
|
|
108 |
- **Metadata Enrichment**: Rich model information from OpenRouter and HuggingFace APIs
|
109 |
|
110 |
-
### π£ Evaluation Pipeline (
|
111 |
- **7 Active Tasks**: Translation (bidirectional), Classification, MMLU, ARC, TruthfulQA, MGSM
|
|
|
|
|
112 |
- **Combinatorial Approach**: Systematic evaluation across Model Γ Language Γ Task combinations
|
113 |
- **Sample-based**: 10 evaluations per combination for statistical reliability
|
114 |
-
- **
|
|
|
115 |
|
116 |
-
### π API Integration (
|
117 |
- **OpenRouter**: Primary model inference API for all language model tasks
|
|
|
|
|
118 |
- **HuggingFace**: Model metadata and open-source model information
|
119 |
-
- **Google Translate**: Specialized translation API for
|
120 |
|
121 |
-
### π’ Data Storage (
|
122 |
-
- **results.json**: Aggregated evaluation scores
|
123 |
-
- **models.json**: Dynamic model list with metadata
|
124 |
- **languages.json**: Language information with population data
|
125 |
|
126 |
-
### π‘ Frontend Visualization (
|
127 |
- **WorldMap**: Interactive country-level language proficiency visualization
|
128 |
-
- **ModelTable**: Ranked model performance leaderboard
|
129 |
- **LanguageTable**: Language coverage and speaker statistics
|
130 |
-
- **DatasetTable**: Task-specific performance breakdowns
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
## Data Flow Summary
|
133 |
|
134 |
-
1. **Model Discovery**: Combine curated + trending models β enrich with metadata
|
135 |
-
2. **Evaluation Setup**: Generate all valid Model Γ Language Γ Task combinations
|
136 |
-
3. **Task Execution**: Run evaluations using
|
137 |
-
4. **Result Processing**: Aggregate scores and save to JSON files
|
138 |
-
5. **Backend Serving**: FastAPI serves processed data via REST API
|
139 |
-
6. **Frontend Display**: React app visualizes data through interactive components
|
140 |
|
141 |
-
This architecture enables scalable, automated evaluation of AI language models across diverse languages and tasks while providing real-time insights through an intuitive web interface.
|
|
|
17 |
G --> H["Enriched Model DataFrame"]
|
18 |
H --> |Save| I[models.json]
|
19 |
|
20 |
+
%% Model Validation & Cost Filtering
|
21 |
+
H --> |"Validate Models<br/>Check API Availability"| H1["Valid Models Only<br/>Cost β€ $20/1M tokens"]
|
22 |
+
H1 --> |"Timeout Protection<br/>120s for Large Models"| H2["Robust Model List"]
|
23 |
+
|
24 |
%% Language Data
|
25 |
J["languages.py<br/>BCP-47 + Population"] --> K["Top 100 Languages"]
|
26 |
|
27 |
+
%% Task Registry with Unified Prompting
|
28 |
+
L["tasks.py<br/>7 Evaluation Tasks"] --> M["Task Functions<br/>Unified English Zero-Shot"]
|
29 |
M --> M1["translation_from/to<br/>BLEU + ChrF"]
|
30 |
M --> M2["classification<br/>Accuracy"]
|
31 |
M --> M3["mmlu<br/>Accuracy"]
|
|
|
33 |
M --> M5["truthfulqa<br/>Accuracy"]
|
34 |
M --> M6["mgsm<br/>Accuracy"]
|
35 |
|
36 |
+
%% On-the-fly Translation with Origin Tagging
|
37 |
+
subgraph OTF [On-the-fly Dataset Translation]
|
38 |
+
direction LR
|
39 |
+
DS_raw["Raw English Dataset<br/>(e.g., MMLU)"] --> Google_Translate["Google Translate API"]
|
40 |
+
Google_Translate --> DS_translated["Translated Dataset<br/>(e.g., German MMLU)<br/>Origin: 'machine'"]
|
41 |
+
DS_native["Native Dataset<br/>(e.g., German MMLU)<br/>Origin: 'human'"]
|
42 |
+
end
|
43 |
+
|
44 |
%% Evaluation Pipeline
|
45 |
+
H2 --> |"models ID"| N["main.py / main_gcs.py<br/>evaluate"]
|
46 |
K --> |"languages bcp_47"| N
|
47 |
L --> |"tasks.items"| N
|
48 |
N --> |"Filter by model.tasks"| O["Valid Combinations<br/>Model Γ Language Γ Task"]
|
49 |
+
O --> |"10 samples each"| P["Evaluation Execution<br/>Batch Processing"]
|
50 |
+
|
51 |
+
%% Task Execution with Origin Tracking
|
52 |
+
P --> Q1[translate_and_evaluate<br/>Origin: 'human']
|
53 |
+
P --> Q2[classify_and_evaluate<br/>Origin: 'human']
|
54 |
+
P --> Q3[mmlu_and_evaluate<br/>Origin: 'human'/'machine']
|
55 |
+
P --> Q4[arc_and_evaluate<br/>Origin: 'human'/'machine']
|
56 |
+
P --> Q5[truthfulqa_and_evaluate<br/>Origin: 'human'/'machine']
|
57 |
+
P --> Q6[mgsm_and_evaluate<br/>Origin: 'human'/'machine']
|
58 |
+
|
59 |
+
%% API Calls with Error Handling
|
60 |
+
Q1 --> |"complete() API<br/>Rate Limiting"| R["OpenRouter<br/>Model Inference"]
|
61 |
+
Q2 --> |"complete() API<br/>Rate Limiting"| R
|
62 |
+
Q3 --> |"complete() API<br/>Rate Limiting"| R
|
63 |
+
Q4 --> |"complete() API<br/>Rate Limiting"| R
|
64 |
+
Q5 --> |"complete() API<br/>Rate Limiting"| R
|
65 |
+
Q6 --> |"complete() API<br/>Rate Limiting"| R
|
66 |
+
|
67 |
+
%% Results Processing with Origin Aggregation
|
68 |
+
R --> |Scores| S["Result Aggregation<br/>Mean by model+lang+task+origin"]
|
69 |
S --> |Save| T[results.json]
|
70 |
|
71 |
+
%% Backend & Frontend with Origin-Specific Metrics
|
72 |
T --> |Read| U[backend.py]
|
73 |
I --> |Read| U
|
74 |
+
U --> |make_model_table| V["Model Rankings<br/>Origin-Specific Metrics"]
|
75 |
U --> |make_country_table| W["Country Aggregation"]
|
76 |
+
U --> |"API Endpoint"| X["FastAPI /api/data<br/>arc_accuracy_human<br/>arc_accuracy_machine"]
|
77 |
X --> |"JSON Response"| Y["Frontend React App"]
|
78 |
|
79 |
%% UI Components
|
|
|
82 |
Y --> Z3["LanguageTable.js<br/>Language Coverage"]
|
83 |
Y --> Z4["DatasetTable.js<br/>Task Performance"]
|
84 |
|
85 |
+
%% Data Sources with Origin Information
|
86 |
subgraph DS ["Data Sources"]
|
87 |
+
DS1["Flores-200<br/>Translation Sentences<br/>Origin: 'human'"]
|
88 |
+
DS2["MMLU/AfriMMLU<br/>Knowledge QA<br/>Origin: 'human'"]
|
89 |
+
DS3["ARC<br/>Science Reasoning<br/>Origin: 'human'"]
|
90 |
+
DS4["TruthfulQA<br/>Truthfulness<br/>Origin: 'human'"]
|
91 |
+
DS5["MGSM<br/>Math Problems<br/>Origin: 'human'"]
|
92 |
end
|
93 |
|
94 |
DS1 --> Q1
|
|
|
97 |
DS4 --> Q5
|
98 |
DS5 --> Q6
|
99 |
|
100 |
+
DS_translated --> Q3
|
101 |
+
DS_translated --> Q4
|
102 |
+
DS_translated --> Q5
|
103 |
+
|
104 |
+
DS_native --> Q3
|
105 |
+
DS_native --> Q4
|
106 |
+
DS_native --> Q5
|
107 |
+
|
108 |
+
%% Styling - Neutral colors that work in both dark and light modes
|
109 |
+
classDef modelSource fill:#f8f9fa,stroke:#6c757d,color:#212529
|
110 |
+
classDef evaluation fill:#e9ecef,stroke:#495057,color:#212529
|
111 |
+
classDef api fill:#dee2e6,stroke:#6c757d,color:#212529
|
112 |
+
classDef storage fill:#d1ecf1,stroke:#0c5460,color:#0c5460
|
113 |
+
classDef frontend fill:#f8d7da,stroke:#721c24,color:#721c24
|
114 |
+
classDef translation fill:#d4edda,stroke:#155724,color:#155724
|
115 |
|
116 |
class A1,A2,A3,A4 modelSource
|
117 |
class Q1,Q2,Q3,Q4,Q5,Q6,P evaluation
|
118 |
class R,F,G,X api
|
119 |
class T,I storage
|
120 |
class Y,Z1,Z2,Z3,Z4 frontend
|
121 |
+
class Google_Translate,DS_translated,DS_native translation
|
122 |
```
|
123 |
|
124 |
## Architecture Components
|
125 |
|
126 |
+
### π΅ Model Discovery (Light Gray)
|
127 |
- **Static Curated Models**: Handpicked important models for comprehensive evaluation
|
128 |
- **Dynamic Popular Models**: Real-time discovery of trending models via web scraping
|
129 |
- **Quality Control**: Blocklist for problematic or incompatible models
|
130 |
+
- **Model Validation**: API availability checks and cost filtering (β€$20/1M tokens)
|
131 |
+
- **Timeout Protection**: 120s timeout for large/reasoning models, 60s for others
|
132 |
- **Metadata Enrichment**: Rich model information from OpenRouter and HuggingFace APIs
|
133 |
|
134 |
+
### π£ Evaluation Pipeline (Medium Gray)
|
135 |
- **7 Active Tasks**: Translation (bidirectional), Classification, MMLU, ARC, TruthfulQA, MGSM
|
136 |
+
- **Unified English Zero-Shot Prompting**: All tasks use English instructions with target language content
|
137 |
+
- **Origin Tagging**: Distinguishes between human-translated ('human') and machine-translated ('machine') data
|
138 |
- **Combinatorial Approach**: Systematic evaluation across Model Γ Language Γ Task combinations
|
139 |
- **Sample-based**: 10 evaluations per combination for statistical reliability
|
140 |
+
- **Batch Processing**: 50 tasks per batch with rate limiting and error resilience
|
141 |
+
- **Dual Deployment**: `main.py` for local/GitHub, `main_gcs.py` for Google Cloud with GCS storage
|
142 |
|
143 |
+
### π API Integration (Light Gray)
|
144 |
- **OpenRouter**: Primary model inference API for all language model tasks
|
145 |
+
- **Rate Limiting**: Intelligent batching and delays to prevent API overload
|
146 |
+
- **Error Handling**: Graceful handling of timeouts, rate limits, and model unavailability
|
147 |
- **HuggingFace**: Model metadata and open-source model information
|
148 |
+
- **Google Translate**: Specialized translation API for on-the-fly dataset translation
|
149 |
|
150 |
+
### π’ Data Storage (Cyan)
|
151 |
+
- **results.json**: Aggregated evaluation scores with origin-specific metrics
|
152 |
+
- **models.json**: Dynamic model list with metadata and validation status
|
153 |
- **languages.json**: Language information with population data
|
154 |
|
155 |
+
### π‘ Frontend Visualization (Light Red)
|
156 |
- **WorldMap**: Interactive country-level language proficiency visualization
|
157 |
+
- **ModelTable**: Ranked model performance leaderboard with origin-specific columns
|
158 |
- **LanguageTable**: Language coverage and speaker statistics
|
159 |
+
- **DatasetTable**: Task-specific performance breakdowns with human/machine distinction
|
160 |
+
|
161 |
+
### π΅ Translation & Origin Tracking (Light Green)
|
162 |
+
- **On-the-fly Translation**: Google Translate API for languages without native benchmarks
|
163 |
+
- **Origin Tagging**: Automatic classification of data sources (human vs. machine translated)
|
164 |
+
- **Separate Metrics**: Frontend displays distinct scores for human and machine-translated data
|
165 |
|
166 |
## Data Flow Summary
|
167 |
|
168 |
+
1. **Model Discovery**: Combine curated + trending models β validate API availability β enrich with metadata
|
169 |
+
2. **Evaluation Setup**: Generate all valid Model Γ Language Γ Task combinations with origin tracking
|
170 |
+
3. **Task Execution**: Run evaluations using unified English prompting and appropriate datasets
|
171 |
+
4. **Result Processing**: Aggregate scores by model+language+task+origin and save to JSON files
|
172 |
+
5. **Backend Serving**: FastAPI serves processed data with origin-specific metrics via REST API
|
173 |
+
6. **Frontend Display**: React app visualizes data through interactive components with transparency indicators
|
174 |
|
175 |
+
This architecture enables scalable, automated evaluation of AI language models across diverse languages and tasks while providing real-time insights through an intuitive web interface with methodological transparency.
|
uv.lock
CHANGED
The diff for this file is too large to render.
See raw diff
|
|