File size: 3,678 Bytes
98c6811
 
 
 
 
fd102e9
 
 
 
 
68a93b5
 
98c6811
 
 
 
 
68a93b5
98c6811
 
 
 
 
 
 
 
 
 
68a93b5
98c6811
68a93b5
98c6811
68a93b5
98c6811
68a93b5
98c6811
7c06aef
 
c790fdb
68a93b5
fd102e9
 
 
 
68a93b5
 
fd102e9
68a93b5
fd102e9
 
 
 
 
 
 
 
 
68a93b5
fd102e9
 
 
 
68a93b5
fd102e9
 
 
 
 
 
68a93b5
fd102e9
68a93b5
 
 
 
 
 
 
 
 
 
fd102e9
 
 
68a93b5
fd102e9
68a93b5
 
fd102e9
 
 
 
 
 
 
 
 
68a93b5
fd102e9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import random
from collections import Counter, defaultdict

from langcodes import Language, standardize_tag
from rich import print
from tqdm import tqdm
import asyncio
from tqdm.asyncio import tqdm_asyncio
import os

from datasets import Dataset, load_dataset
from models import translate_google, google_supported_languages

from datasets_.util import _get_dataset_config_names, _load_dataset

slug_uhura_truthfulqa = "masakhane/uhura-truthfulqa"
tags_uhura_truthfulqa = {
    standardize_tag(a.split("_")[0], macro=True): a for a in _get_dataset_config_names(slug_uhura_truthfulqa)
    if a.endswith("multiple_choice")
}


def add_choices(row):
    row["choices"] = row["mc1_targets"]["choices"]
    row["labels"] = row["mc1_targets"]["labels"]
    return row


def load_truthfulqa(language_bcp_47, nr):
    if language_bcp_47 in tags_uhura_truthfulqa.keys():
        ds = _load_dataset(slug_uhura_truthfulqa, tags_uhura_truthfulqa[language_bcp_47])
        ds = ds.map(add_choices)
        examples = ds["train"]
        task = ds["test"][nr]
        return "masakhane/uhura-truthfulqa", examples, task
    else:
        return None, None, None



def translate_truthfulqa(languages):
    human_translated = [*tags_uhura_truthfulqa.keys()]
    untranslated = [
        lang
        for lang in languages["bcp_47"].values[:100]
        if lang not in human_translated and lang in google_supported_languages
    ]
    n_samples = 10

    slug = "fair-forward/truthfulqa-autotranslated"
    for lang in tqdm(untranslated):
        # check if already exists on hub
        try:
            ds_lang = load_dataset(slug, lang)
        except (ValueError, Exception):
            print(f"Translating {lang}...")
            for split in ["train", "test"]:
                ds = _load_dataset(slug_uhura_truthfulqa, tags_uhura_truthfulqa["en"], split=split)
                samples = []
                if split == "train":
                    samples.extend(ds)
                else:
                    for i in range(n_samples):
                        task = ds[i]
                        samples.append(task)
                questions_tr = [
                    translate_google(s["question"], "en", lang) for s in samples
                ]
                questions_tr = asyncio.run(tqdm_asyncio.gather(*questions_tr))
                choices_texts_concatenated = []
                for s in samples:
                    for choice in eval(s["choices"]):
                        choices_texts_concatenated.append(choice)
                choices_tr = [
                    translate_google(c, "en", lang) for c in choices_texts_concatenated
                ]
                choices_tr = asyncio.run(tqdm_asyncio.gather(*choices_tr))
                # group into chunks of 4
                choices_tr = [
                    choices_tr[i : i + 4] for i in range(0, len(choices_tr), 4)
                ]

                ds_lang = Dataset.from_dict(
                    {
                        "subject": [s["subject"] for s in samples],
                        "question": questions_tr,
                        "choices": choices_tr,
                        "answer": [s["answer"] for s in samples],
                    }
                )
                ds_lang.push_to_hub(
                    slug,
                    split=split,
                    config_name=lang,
                    token=os.getenv("HUGGINGFACE_ACCESS_TOKEN"),
                )
                ds_lang.to_json(
                    f"data/translations/mmlu/{lang}_{split}.json",
                    lines=False,
                    force_ascii=False,
                    indent=2,
                )