image_editing / app.py
fahad11182's picture
Update app.py
828ab31 verified
raw
history blame
5.22 kB
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline
import gradio as gr
from PIL import Image
import random
# Load the InstructPix2Pix model
model_id = "timbrooks/instruct-pix2pix"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
# Initialize a random seed
seed = random.randint(0, 10000)
# Function to reset the seed
def change_style():
global seed
seed = random.randint(0, 10000)
return f"Seed changed to: {seed}"
# Changign the walls' color function
def change_color(image,color):
# Construct the furniture prompt
prompt = f"paint the walls with {color} color "
# Text CFG (guidance_scale) controls how strongly the model follows the prompt
text_cfg = 7.5
# Image CFG: Although not explicitly part of InstructPix2Pix, you can "simulate" image preservation
# by lowering the impact of the guidance. Here, we assume lower guidance impacts image preservation.
image_cfg = 1.5
# Apply the edit using InstructPix2Pix, with text CFG and image CFG influencing the guidance scale
edited_image = pipe(
prompt=prompt,
image=image,
num_inference_steps=70, # Number of diffusion steps
guidance_scale=text_cfg, # Text CFG for following the prompt
image_guidance_scale=image_cfg, # Simulated Image CFG to preserve image content
generator=torch.manual_seed(seed) # Random seed for consistency
).images[0]
return edited_image
# General image editing function
def edit_image(image, instruction):
# Text CFG (guidance_scale) controls how strongly the model follows the prompt
text_cfg = 12.0
# Image CFG: Simulated value for preserving the original image content
image_cfg = 1.5
# Apply the edit using InstructPix2Pix, with text CFG and simulated image CFG
edited_image = pipe(
prompt=instruction,
image=image,
num_inference_steps=70, # Number of diffusion steps
guidance_scale=text_cfg, # Text CFG for following the prompt
image_guidance_scale=image_cfg, # Simulated Image CFG to preserve image content
generator=torch.manual_seed(seed) # Random seed for consistency
).images[0]
return edited_image
# Gradio interface for image editing
def image_interface():
with gr.Blocks() as demo_color:
gr.Markdown("## Furniture Adding App")
# Image upload
image_input = gr.Image(type="pil", label="Upload Room Image")
# List of common painting colors
common_colors = [
"Alabaster", # Off-white
"Agreeable Gray", # Warm gray
"Sea Salt", # Soft greenish-blue
"Pure White", # Bright white
"Accessible Beige", # Warm beige
"Mindful Gray", # Cool gray
"Peppercorn", # Dark charcoal gray
"Hale Navy", # Dark navy blue
"Tricorn Black", # Pure black
"Pale Oak", # Soft taupe
"Silver Strand", # Soft blue-gray
"Rainwashed", # Light aqua
"Orange Burst", # Bright orange
"Sunny Yellow", # Bright yellow
"Sage Green", # Muted green
"Firebrick Red", # Deep red
"Lavender", # Soft purple
"Sky Blue", # Light blue
"Coral", # Vibrant coral
]
# Dropdown for wall color
color_input = gr.Dropdown(common_colors, label="Choose Wall Color")
# Display output image
result_image = gr.Image(label="Edited Image")
# Button to apply the wall color transformation
submit_button = gr.Button("Paint the walls")
# Define action on button click
submit_button.click(fn=change_color, inputs=[image_input, color_input], outputs=result_image)
return demo_color
# Gradio interface for general image editing
def general_editing_interface():
with gr.Blocks() as demo_general:
gr.Markdown("## General Image Editing App")
# Image upload
image_input = gr.Image(type="pil", label="Upload an Image")
# Textbox for instruction
instruction_input = gr.Textbox(label="Enter the Instruction", placeholder="Describe the changes (e.g., 'Make it snowy')")
# Display output image
result_image = gr.Image(label="Edited Image")
# Button to apply the transformation
submit_button = gr.Button("Apply Edit")
# Button to change the seed (style)
change_style_button = gr.Button("Change the Style")
# Output for seed change message
seed_output = gr.Textbox(label="Seed Info", interactive=False)
# Define action on button click
submit_button.click(fn=edit_image, inputs=[image_input, instruction_input], outputs=result_image)
change_style_button.click(fn=change_style, outputs=seed_output)
return demo_general
# Launch both Gradio apps
color_app = image_interface()
general_editing_app = general_editing_interface()
with gr.Blocks() as combined_demo:
gr.Markdown("## Select the Application")
with gr.Tab("General Image Editing App"):
general_editing_app.render()
with gr.Tab("Changing The Paint App"):
color_app.render()
# Launch the combined Gradio app
combined_demo.launch()