Spaces:
Sleeping
Sleeping
File size: 3,047 Bytes
2fceb69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import streamlit as st
import tensorflow as tf
import numpy as np
import librosa
import matplotlib.pyplot as plt
import librosa.display
import tempfile
import os
# Load the trained model
@st.cache_resource
def load_model():
model_path = "sound_classification_model.h5" # Replace with the path to your .h5 file
model = tf.keras.models.load_model(model_path)
return model
model = load_model()
# Preprocess audio into a spectrogram
def preprocess_audio(file_path, n_mels=128, fixed_time_steps=128):
try:
y, sr = librosa.load(file_path, sr=None)
mel_spectrogram = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=n_mels, fmax=sr/2)
log_spectrogram = librosa.power_to_db(mel_spectrogram, ref=np.max)
log_spectrogram = log_spectrogram / np.max(np.abs(log_spectrogram))
if log_spectrogram.shape[1] < fixed_time_steps:
padding = fixed_time_steps - log_spectrogram.shape[1]
log_spectrogram = np.pad(log_spectrogram, ((0, 0), (0, padding)), mode='constant')
else:
log_spectrogram = log_spectrogram[:, :fixed_time_steps]
return np.expand_dims(log_spectrogram, axis=-1) # Add channel dimension for CNNs
except Exception as e:
print(f"Error processing {file_path}: {e}")
return None
# Streamlit app UI
st.title("Audio Spectrogram Prediction")
st.write("Upload an audio file to generate a spectrogram and predict its class using your trained model.")
# File upload widget
uploaded_file = st.file_uploader("Choose an audio file", type=["wav", "mp3"])
if uploaded_file is not None:
# Save the uploaded audio file to a temporary location
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
temp_audio_file.write(uploaded_file.read())
temp_audio_path = temp_audio_file.name
# Preprocess the audio into a spectrogram
st.write("Processing audio into a spectrogram...")
spectrogram = preprocess_audio(temp_audio_path)
if spectrogram is not None:
# Display the spectrogram
st.write("Generated Spectrogram:")
plt.figure(figsize=(10, 4))
librosa.display.specshow(spectrogram[:, :, 0], sr=22050, x_axis='time', y_axis='mel', fmax=8000, cmap='plasma')
plt.colorbar(format='%+2.0f dB')
plt.title('Mel-Spectrogram')
plt.tight_layout()
st.pyplot(plt)
# Predict using the model
st.write("Predicting...")
spectrogram = np.expand_dims(spectrogram, axis=0) # Add batch dimension
predictions = model.predict(spectrogram)
predicted_class = np.argmax(predictions, axis=-1) # Assuming classification
# Display the results
st.write("Prediction Results:")
st.write(f"Predicted Class: {int(predicted_class[0])}")
st.write(f"Raw Model Output: {predictions}")
else:
st.write("Failed to process the audio file. Please try again with a different file.")
# Optional: Clean up temporary file
os.remove(temp_audio_path)
|