Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
import librosa
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import librosa.display
|
7 |
+
import tempfile
|
8 |
+
import os
|
9 |
+
|
10 |
+
# Load the trained model
|
11 |
+
@st.cache_resource
|
12 |
+
def load_model():
|
13 |
+
model_path = "sound_classification_model.h5" # Replace with the path to your .h5 file
|
14 |
+
model = tf.keras.models.load_model(model_path)
|
15 |
+
return model
|
16 |
+
|
17 |
+
model = load_model()
|
18 |
+
|
19 |
+
# Preprocess audio into a spectrogram
|
20 |
+
def preprocess_audio(file_path, n_mels=128, fixed_time_steps=128):
|
21 |
+
try:
|
22 |
+
y, sr = librosa.load(file_path, sr=None)
|
23 |
+
mel_spectrogram = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=n_mels, fmax=sr/2)
|
24 |
+
log_spectrogram = librosa.power_to_db(mel_spectrogram, ref=np.max)
|
25 |
+
log_spectrogram = log_spectrogram / np.max(np.abs(log_spectrogram))
|
26 |
+
if log_spectrogram.shape[1] < fixed_time_steps:
|
27 |
+
padding = fixed_time_steps - log_spectrogram.shape[1]
|
28 |
+
log_spectrogram = np.pad(log_spectrogram, ((0, 0), (0, padding)), mode='constant')
|
29 |
+
else:
|
30 |
+
log_spectrogram = log_spectrogram[:, :fixed_time_steps]
|
31 |
+
return np.expand_dims(log_spectrogram, axis=-1) # Add channel dimension for CNNs
|
32 |
+
except Exception as e:
|
33 |
+
print(f"Error processing {file_path}: {e}")
|
34 |
+
return None
|
35 |
+
|
36 |
+
# Streamlit app UI
|
37 |
+
st.title("Audio Spectrogram Prediction")
|
38 |
+
st.write("Upload an audio file to generate a spectrogram and predict its class using your trained model.")
|
39 |
+
|
40 |
+
# File upload widget
|
41 |
+
uploaded_file = st.file_uploader("Choose an audio file", type=["wav", "mp3"])
|
42 |
+
|
43 |
+
if uploaded_file is not None:
|
44 |
+
# Save the uploaded audio file to a temporary location
|
45 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
|
46 |
+
temp_audio_file.write(uploaded_file.read())
|
47 |
+
temp_audio_path = temp_audio_file.name
|
48 |
+
|
49 |
+
# Preprocess the audio into a spectrogram
|
50 |
+
st.write("Processing audio into a spectrogram...")
|
51 |
+
spectrogram = preprocess_audio(temp_audio_path)
|
52 |
+
|
53 |
+
if spectrogram is not None:
|
54 |
+
# Display the spectrogram
|
55 |
+
st.write("Generated Spectrogram:")
|
56 |
+
plt.figure(figsize=(10, 4))
|
57 |
+
librosa.display.specshow(spectrogram[:, :, 0], sr=22050, x_axis='time', y_axis='mel', fmax=8000, cmap='plasma')
|
58 |
+
plt.colorbar(format='%+2.0f dB')
|
59 |
+
plt.title('Mel-Spectrogram')
|
60 |
+
plt.tight_layout()
|
61 |
+
st.pyplot(plt)
|
62 |
+
|
63 |
+
# Predict using the model
|
64 |
+
st.write("Predicting...")
|
65 |
+
spectrogram = np.expand_dims(spectrogram, axis=0) # Add batch dimension
|
66 |
+
predictions = model.predict(spectrogram)
|
67 |
+
predicted_class = np.argmax(predictions, axis=-1) # Assuming classification
|
68 |
+
|
69 |
+
# Display the results
|
70 |
+
st.write("Prediction Results:")
|
71 |
+
st.write(f"Predicted Class: {int(predicted_class[0])}")
|
72 |
+
st.write(f"Raw Model Output: {predictions}")
|
73 |
+
else:
|
74 |
+
st.write("Failed to process the audio file. Please try again with a different file.")
|
75 |
+
|
76 |
+
# Optional: Clean up temporary file
|
77 |
+
os.remove(temp_audio_path)
|