Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
# coding=utf-8 | |
# Copyright 2019 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import pickle | |
import shutil | |
import tempfile | |
class TokenizerTesterMixin: | |
tokenizer_class = None | |
test_rust_tokenizer = False | |
def setUp(self): | |
self.tmpdirname = tempfile.mkdtemp() | |
def tearDown(self): | |
shutil.rmtree(self.tmpdirname) | |
def get_tokenizer(self, **kwargs): | |
raise NotImplementedError | |
def get_rust_tokenizer(self, **kwargs): | |
raise NotImplementedError | |
def get_input_output_texts(self): | |
raise NotImplementedError | |
def test_tokenizers_common_properties(self): | |
tokenizer = self.get_tokenizer() | |
attributes_list = [ | |
"bos_token", | |
"eos_token", | |
"unk_token", | |
"sep_token", | |
"pad_token", | |
"cls_token", | |
"mask_token", | |
] | |
for attr in attributes_list: | |
self.assertTrue(hasattr(tokenizer, attr)) | |
self.assertTrue(hasattr(tokenizer, attr + "_id")) | |
self.assertTrue(hasattr(tokenizer, "additional_special_tokens")) | |
self.assertTrue(hasattr(tokenizer, "additional_special_tokens_ids")) | |
attributes_list = ["max_len", "init_inputs", "init_kwargs", "added_tokens_encoder", "added_tokens_decoder"] | |
for attr in attributes_list: | |
self.assertTrue(hasattr(tokenizer, attr)) | |
def test_save_and_load_tokenizer(self): | |
# safety check on max_len default value so we are sure the test works | |
tokenizer = self.get_tokenizer() | |
self.assertNotEqual(tokenizer.max_len, 42) | |
# Now let's start the test | |
tokenizer = self.get_tokenizer(max_len=42) | |
before_tokens = tokenizer.encode("He is very happy, UNwant\u00E9d,running", add_special_tokens=False) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
tokenizer.save_pretrained(tmpdirname) | |
tokenizer = self.tokenizer_class.from_pretrained(tmpdirname) | |
after_tokens = tokenizer.encode("He is very happy, UNwant\u00E9d,running", add_special_tokens=False) | |
self.assertListEqual(before_tokens, after_tokens) | |
self.assertEqual(tokenizer.max_len, 42) | |
tokenizer = self.tokenizer_class.from_pretrained(tmpdirname, max_len=43) | |
self.assertEqual(tokenizer.max_len, 43) | |
def test_pickle_tokenizer(self): | |
tokenizer = self.get_tokenizer() | |
self.assertIsNotNone(tokenizer) | |
text = "Munich and Berlin are nice cities" | |
subwords = tokenizer.tokenize(text) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filename = os.path.join(tmpdirname, "tokenizer.bin") | |
with open(filename, "wb") as handle: | |
pickle.dump(tokenizer, handle) | |
with open(filename, "rb") as handle: | |
tokenizer_new = pickle.load(handle) | |
subwords_loaded = tokenizer_new.tokenize(text) | |
self.assertListEqual(subwords, subwords_loaded) | |
def test_added_tokens_do_lower_case(self): | |
tokenizer = self.get_tokenizer(do_lower_case=True) | |
special_token = tokenizer.all_special_tokens[0] | |
text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token | |
text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token | |
toks0 = tokenizer.tokenize(text) # toks before adding new_toks | |
new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"] | |
added = tokenizer.add_tokens(new_toks) | |
self.assertEqual(added, 2) | |
toks = tokenizer.tokenize(text) | |
toks2 = tokenizer.tokenize(text2) | |
self.assertEqual(len(toks), len(toks2)) | |
self.assertNotEqual(len(toks), len(toks0)) # toks0 should be longer | |
self.assertListEqual(toks, toks2) | |
# Check that none of the special tokens are lowercased | |
sequence_with_special_tokens = "A " + " yEs ".join(tokenizer.all_special_tokens) + " B" | |
tokenized_sequence = tokenizer.tokenize(sequence_with_special_tokens) | |
for special_token in tokenizer.all_special_tokens: | |
self.assertTrue(special_token in tokenized_sequence) | |
tokenizer = self.get_tokenizer(do_lower_case=False) | |
added = tokenizer.add_tokens(new_toks) | |
self.assertEqual(added, 4) | |
toks = tokenizer.tokenize(text) | |
toks2 = tokenizer.tokenize(text2) | |
self.assertEqual(len(toks), len(toks2)) # Length should still be the same | |
self.assertNotEqual(len(toks), len(toks0)) | |
self.assertNotEqual(toks[1], toks2[1]) # But at least the first non-special tokens should differ | |
def test_add_tokens_tokenizer(self): | |
tokenizer = self.get_tokenizer() | |
vocab_size = tokenizer.vocab_size | |
all_size = len(tokenizer) | |
self.assertNotEqual(vocab_size, 0) | |
self.assertEqual(vocab_size, all_size) | |
new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"] | |
added_toks = tokenizer.add_tokens(new_toks) | |
vocab_size_2 = tokenizer.vocab_size | |
all_size_2 = len(tokenizer) | |
self.assertNotEqual(vocab_size_2, 0) | |
self.assertEqual(vocab_size, vocab_size_2) | |
self.assertEqual(added_toks, len(new_toks)) | |
self.assertEqual(all_size_2, all_size + len(new_toks)) | |
tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False) | |
self.assertGreaterEqual(len(tokens), 4) | |
self.assertGreater(tokens[0], tokenizer.vocab_size - 1) | |
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1) | |
new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} | |
added_toks_2 = tokenizer.add_special_tokens(new_toks_2) | |
vocab_size_3 = tokenizer.vocab_size | |
all_size_3 = len(tokenizer) | |
self.assertNotEqual(vocab_size_3, 0) | |
self.assertEqual(vocab_size, vocab_size_3) | |
self.assertEqual(added_toks_2, len(new_toks_2)) | |
self.assertEqual(all_size_3, all_size_2 + len(new_toks_2)) | |
tokens = tokenizer.encode( | |
">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False | |
) | |
self.assertGreaterEqual(len(tokens), 6) | |
self.assertGreater(tokens[0], tokenizer.vocab_size - 1) | |
self.assertGreater(tokens[0], tokens[1]) | |
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1) | |
self.assertGreater(tokens[-2], tokens[-3]) | |
self.assertEqual(tokens[0], tokenizer.eos_token_id) | |
self.assertEqual(tokens[-2], tokenizer.pad_token_id) | |
def test_add_special_tokens(self): | |
tokenizer = self.get_tokenizer() | |
input_text, output_text = self.get_input_output_texts() | |
special_token = "[SPECIAL TOKEN]" | |
tokenizer.add_special_tokens({"cls_token": special_token}) | |
encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False) | |
assert len(encoded_special_token) == 1 | |
text = " ".join([input_text, special_token, output_text]) | |
encoded = tokenizer.encode(text, add_special_tokens=False) | |
input_encoded = tokenizer.encode(input_text, add_special_tokens=False) | |
output_encoded = tokenizer.encode(output_text, add_special_tokens=False) | |
special_token_id = tokenizer.encode(special_token, add_special_tokens=False) | |
assert encoded == input_encoded + special_token_id + output_encoded | |
decoded = tokenizer.decode(encoded, skip_special_tokens=True) | |
assert special_token not in decoded | |
def test_required_methods_tokenizer(self): | |
tokenizer = self.get_tokenizer() | |
input_text, output_text = self.get_input_output_texts() | |
tokens = tokenizer.tokenize(input_text) | |
ids = tokenizer.convert_tokens_to_ids(tokens) | |
ids_2 = tokenizer.encode(input_text, add_special_tokens=False) | |
self.assertListEqual(ids, ids_2) | |
tokens_2 = tokenizer.convert_ids_to_tokens(ids) | |
text_2 = tokenizer.decode(ids) | |
self.assertEqual(text_2, output_text) | |
self.assertNotEqual(len(tokens_2), 0) | |
self.assertIsInstance(text_2, str) | |
def test_encode_decode_with_spaces(self): | |
tokenizer = self.get_tokenizer() | |
new_toks = ["[ABC]", "[DEF]", "GHI IHG"] | |
tokenizer.add_tokens(new_toks) | |
input = "[ABC] [DEF] [ABC] GHI IHG [DEF]" | |
encoded = tokenizer.encode(input, add_special_tokens=False) | |
decoded = tokenizer.decode(encoded) | |
self.assertEqual(decoded, input) | |
def test_pretrained_model_lists(self): | |
weights_list = list(self.tokenizer_class.max_model_input_sizes.keys()) | |
weights_lists_2 = [] | |
for file_id, map_list in self.tokenizer_class.pretrained_vocab_files_map.items(): | |
weights_lists_2.append(list(map_list.keys())) | |
for weights_list_2 in weights_lists_2: | |
self.assertListEqual(weights_list, weights_list_2) | |
def test_mask_output(self): | |
tokenizer = self.get_tokenizer() | |
if tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer": | |
seq_0 = "Test this method." | |
seq_1 = "With these inputs." | |
information = tokenizer.encode_plus(seq_0, seq_1, add_special_tokens=True) | |
sequences, mask = information["input_ids"], information["token_type_ids"] | |
self.assertEqual(len(sequences), len(mask)) | |
def test_number_of_added_tokens(self): | |
tokenizer = self.get_tokenizer() | |
seq_0 = "Test this method." | |
seq_1 = "With these inputs." | |
sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=False) | |
attached_sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=True) | |
# Method is implemented (e.g. not GPT-2) | |
if len(attached_sequences) != 2: | |
self.assertEqual(tokenizer.num_added_tokens(pair=True), len(attached_sequences) - len(sequences)) | |
def test_maximum_encoding_length_single_input(self): | |
tokenizer = self.get_tokenizer() | |
seq_0 = "This is a sentence to be encoded." | |
stride = 2 | |
sequence = tokenizer.encode(seq_0, add_special_tokens=False) | |
num_added_tokens = tokenizer.num_added_tokens() | |
total_length = len(sequence) + num_added_tokens | |
information = tokenizer.encode_plus( | |
seq_0, max_length=total_length - 2, add_special_tokens=True, stride=stride, return_overflowing_tokens=True, | |
) | |
truncated_sequence = information["input_ids"] | |
overflowing_tokens = information["overflowing_tokens"] | |
self.assertEqual(len(overflowing_tokens), 2 + stride) | |
self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :]) | |
self.assertEqual(len(truncated_sequence), total_length - 2) | |
self.assertEqual(truncated_sequence, tokenizer.build_inputs_with_special_tokens(sequence[:-2])) | |
def test_maximum_encoding_length_pair_input(self): | |
tokenizer = self.get_tokenizer() | |
seq_0 = "This is a sentence to be encoded." | |
seq_1 = "This is another sentence to be encoded." | |
stride = 2 | |
sequence_0_no_special_tokens = tokenizer.encode(seq_0, add_special_tokens=False) | |
sequence_1_no_special_tokens = tokenizer.encode(seq_1, add_special_tokens=False) | |
sequence = tokenizer.encode(seq_0, seq_1, add_special_tokens=True) | |
truncated_second_sequence = tokenizer.build_inputs_with_special_tokens( | |
tokenizer.encode(seq_0, add_special_tokens=False), tokenizer.encode(seq_1, add_special_tokens=False)[:-2], | |
) | |
information = tokenizer.encode_plus( | |
seq_0, | |
seq_1, | |
max_length=len(sequence) - 2, | |
add_special_tokens=True, | |
stride=stride, | |
truncation_strategy="only_second", | |
return_overflowing_tokens=True, | |
) | |
information_first_truncated = tokenizer.encode_plus( | |
seq_0, | |
seq_1, | |
max_length=len(sequence) - 2, | |
add_special_tokens=True, | |
stride=stride, | |
truncation_strategy="only_first", | |
return_overflowing_tokens=True, | |
) | |
truncated_sequence = information["input_ids"] | |
overflowing_tokens = information["overflowing_tokens"] | |
overflowing_tokens_first_truncated = information_first_truncated["overflowing_tokens"] | |
self.assertEqual(len(overflowing_tokens), 2 + stride) | |
self.assertEqual(overflowing_tokens, sequence_1_no_special_tokens[-(2 + stride) :]) | |
self.assertEqual(overflowing_tokens_first_truncated, sequence_0_no_special_tokens[-(2 + stride) :]) | |
self.assertEqual(len(truncated_sequence), len(sequence) - 2) | |
self.assertEqual(truncated_sequence, truncated_second_sequence) | |
def test_encode_input_type(self): | |
tokenizer = self.get_tokenizer() | |
sequence = "Let's encode this sequence" | |
tokens = tokenizer.tokenize(sequence) | |
input_ids = tokenizer.convert_tokens_to_ids(tokens) | |
formatted_input = tokenizer.encode(sequence, add_special_tokens=True) | |
self.assertEqual(tokenizer.encode(tokens, add_special_tokens=True), formatted_input) | |
self.assertEqual(tokenizer.encode(input_ids, add_special_tokens=True), formatted_input) | |
def test_special_tokens_mask(self): | |
tokenizer = self.get_tokenizer() | |
sequence_0 = "Encode this." | |
sequence_1 = "This one too please." | |
# Testing single inputs | |
encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False) | |
encoded_sequence_dict = tokenizer.encode_plus( | |
sequence_0, add_special_tokens=True, return_special_tokens_mask=True | |
) | |
encoded_sequence_w_special = encoded_sequence_dict["input_ids"] | |
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"] | |
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special)) | |
filtered_sequence = [ | |
(x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special) | |
] | |
filtered_sequence = [x for x in filtered_sequence if x is not None] | |
self.assertEqual(encoded_sequence, filtered_sequence) | |
# Testing inputs pairs | |
encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False) + tokenizer.encode( | |
sequence_1, add_special_tokens=False | |
) | |
encoded_sequence_dict = tokenizer.encode_plus( | |
sequence_0, sequence_1, add_special_tokens=True, return_special_tokens_mask=True | |
) | |
encoded_sequence_w_special = encoded_sequence_dict["input_ids"] | |
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"] | |
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special)) | |
filtered_sequence = [ | |
(x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special) | |
] | |
filtered_sequence = [x for x in filtered_sequence if x is not None] | |
self.assertEqual(encoded_sequence, filtered_sequence) | |
# Testing with already existing special tokens | |
if tokenizer.cls_token_id == tokenizer.unk_token_id and tokenizer.cls_token_id == tokenizer.unk_token_id: | |
tokenizer.add_special_tokens({"cls_token": "</s>", "sep_token": "<s>"}) | |
encoded_sequence_dict = tokenizer.encode_plus( | |
sequence_0, add_special_tokens=True, return_special_tokens_mask=True | |
) | |
encoded_sequence_w_special = encoded_sequence_dict["input_ids"] | |
special_tokens_mask_orig = encoded_sequence_dict["special_tokens_mask"] | |
special_tokens_mask = tokenizer.get_special_tokens_mask( | |
encoded_sequence_w_special, already_has_special_tokens=True | |
) | |
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special)) | |
self.assertEqual(special_tokens_mask_orig, special_tokens_mask) | |
def test_padding_to_max_length(self): | |
tokenizer = self.get_tokenizer() | |
sequence = "Sequence" | |
padding_size = 10 | |
padding_idx = tokenizer.pad_token_id | |
# RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True | |
tokenizer.padding_side = "right" | |
encoded_sequence = tokenizer.encode(sequence) | |
sequence_length = len(encoded_sequence) | |
padded_sequence = tokenizer.encode(sequence, max_length=sequence_length + padding_size, pad_to_max_length=True) | |
padded_sequence_length = len(padded_sequence) | |
assert sequence_length + padding_size == padded_sequence_length | |
assert encoded_sequence + [padding_idx] * padding_size == padded_sequence | |
# LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True | |
tokenizer.padding_side = "left" | |
encoded_sequence = tokenizer.encode(sequence) | |
sequence_length = len(encoded_sequence) | |
padded_sequence = tokenizer.encode(sequence, max_length=sequence_length + padding_size, pad_to_max_length=True) | |
padded_sequence_length = len(padded_sequence) | |
assert sequence_length + padding_size == padded_sequence_length | |
assert [padding_idx] * padding_size + encoded_sequence == padded_sequence | |
# RIGHT & LEFT PADDING - Check that nothing is done when a maximum length is not specified | |
encoded_sequence = tokenizer.encode(sequence) | |
sequence_length = len(encoded_sequence) | |
tokenizer.padding_side = "right" | |
padded_sequence_right = tokenizer.encode(sequence, pad_to_max_length=True) | |
padded_sequence_right_length = len(padded_sequence_right) | |
tokenizer.padding_side = "left" | |
padded_sequence_left = tokenizer.encode(sequence, pad_to_max_length=True) | |
padded_sequence_left_length = len(padded_sequence_left) | |
assert sequence_length == padded_sequence_right_length | |
assert encoded_sequence == padded_sequence_right | |
assert sequence_length == padded_sequence_left_length | |
assert encoded_sequence == padded_sequence_left | |
def test_encode_plus_with_padding(self): | |
tokenizer = self.get_tokenizer() | |
sequence = "Sequence" | |
padding_size = 10 | |
padding_idx = tokenizer.pad_token_id | |
token_type_padding_idx = tokenizer.pad_token_type_id | |
encoded_sequence = tokenizer.encode_plus(sequence, return_special_tokens_mask=True) | |
input_ids = encoded_sequence["input_ids"] | |
token_type_ids = encoded_sequence["token_type_ids"] | |
attention_mask = encoded_sequence["attention_mask"] | |
special_tokens_mask = encoded_sequence["special_tokens_mask"] | |
sequence_length = len(input_ids) | |
# Test right padding | |
tokenizer.padding_side = "right" | |
padded_sequence = tokenizer.encode_plus( | |
sequence, | |
max_length=sequence_length + padding_size, | |
pad_to_max_length=True, | |
return_special_tokens_mask=True, | |
) | |
padded_input_ids = padded_sequence["input_ids"] | |
padded_token_type_ids = padded_sequence["token_type_ids"] | |
padded_attention_mask = padded_sequence["attention_mask"] | |
padded_special_tokens_mask = padded_sequence["special_tokens_mask"] | |
padded_sequence_length = len(padded_input_ids) | |
assert sequence_length + padding_size == padded_sequence_length | |
assert input_ids + [padding_idx] * padding_size == padded_input_ids | |
assert token_type_ids + [token_type_padding_idx] * padding_size == padded_token_type_ids | |
assert attention_mask + [0] * padding_size == padded_attention_mask | |
assert special_tokens_mask + [1] * padding_size == padded_special_tokens_mask | |
# Test left padding | |
tokenizer.padding_side = "left" | |
padded_sequence = tokenizer.encode_plus( | |
sequence, | |
max_length=sequence_length + padding_size, | |
pad_to_max_length=True, | |
return_special_tokens_mask=True, | |
) | |
padded_input_ids = padded_sequence["input_ids"] | |
padded_token_type_ids = padded_sequence["token_type_ids"] | |
padded_attention_mask = padded_sequence["attention_mask"] | |
padded_special_tokens_mask = padded_sequence["special_tokens_mask"] | |
padded_sequence_length = len(padded_input_ids) | |
assert sequence_length + padding_size == padded_sequence_length | |
assert [padding_idx] * padding_size + input_ids == padded_input_ids | |
assert [token_type_padding_idx] * padding_size + token_type_ids == padded_token_type_ids | |
assert [0] * padding_size + attention_mask == padded_attention_mask | |
assert [1] * padding_size + special_tokens_mask == padded_special_tokens_mask | |