# coding=utf-8 # Copyright 2019 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle import shutil import tempfile class TokenizerTesterMixin: tokenizer_class = None test_rust_tokenizer = False def setUp(self): self.tmpdirname = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.tmpdirname) def get_tokenizer(self, **kwargs): raise NotImplementedError def get_rust_tokenizer(self, **kwargs): raise NotImplementedError def get_input_output_texts(self): raise NotImplementedError def test_tokenizers_common_properties(self): tokenizer = self.get_tokenizer() attributes_list = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] for attr in attributes_list: self.assertTrue(hasattr(tokenizer, attr)) self.assertTrue(hasattr(tokenizer, attr + "_id")) self.assertTrue(hasattr(tokenizer, "additional_special_tokens")) self.assertTrue(hasattr(tokenizer, "additional_special_tokens_ids")) attributes_list = ["max_len", "init_inputs", "init_kwargs", "added_tokens_encoder", "added_tokens_decoder"] for attr in attributes_list: self.assertTrue(hasattr(tokenizer, attr)) def test_save_and_load_tokenizer(self): # safety check on max_len default value so we are sure the test works tokenizer = self.get_tokenizer() self.assertNotEqual(tokenizer.max_len, 42) # Now let's start the test tokenizer = self.get_tokenizer(max_len=42) before_tokens = tokenizer.encode("He is very happy, UNwant\u00E9d,running", add_special_tokens=False) with tempfile.TemporaryDirectory() as tmpdirname: tokenizer.save_pretrained(tmpdirname) tokenizer = self.tokenizer_class.from_pretrained(tmpdirname) after_tokens = tokenizer.encode("He is very happy, UNwant\u00E9d,running", add_special_tokens=False) self.assertListEqual(before_tokens, after_tokens) self.assertEqual(tokenizer.max_len, 42) tokenizer = self.tokenizer_class.from_pretrained(tmpdirname, max_len=43) self.assertEqual(tokenizer.max_len, 43) def test_pickle_tokenizer(self): tokenizer = self.get_tokenizer() self.assertIsNotNone(tokenizer) text = "Munich and Berlin are nice cities" subwords = tokenizer.tokenize(text) with tempfile.TemporaryDirectory() as tmpdirname: filename = os.path.join(tmpdirname, "tokenizer.bin") with open(filename, "wb") as handle: pickle.dump(tokenizer, handle) with open(filename, "rb") as handle: tokenizer_new = pickle.load(handle) subwords_loaded = tokenizer_new.tokenize(text) self.assertListEqual(subwords, subwords_loaded) def test_added_tokens_do_lower_case(self): tokenizer = self.get_tokenizer(do_lower_case=True) special_token = tokenizer.all_special_tokens[0] text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token toks0 = tokenizer.tokenize(text) # toks before adding new_toks new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"] added = tokenizer.add_tokens(new_toks) self.assertEqual(added, 2) toks = tokenizer.tokenize(text) toks2 = tokenizer.tokenize(text2) self.assertEqual(len(toks), len(toks2)) self.assertNotEqual(len(toks), len(toks0)) # toks0 should be longer self.assertListEqual(toks, toks2) # Check that none of the special tokens are lowercased sequence_with_special_tokens = "A " + " yEs ".join(tokenizer.all_special_tokens) + " B" tokenized_sequence = tokenizer.tokenize(sequence_with_special_tokens) for special_token in tokenizer.all_special_tokens: self.assertTrue(special_token in tokenized_sequence) tokenizer = self.get_tokenizer(do_lower_case=False) added = tokenizer.add_tokens(new_toks) self.assertEqual(added, 4) toks = tokenizer.tokenize(text) toks2 = tokenizer.tokenize(text2) self.assertEqual(len(toks), len(toks2)) # Length should still be the same self.assertNotEqual(len(toks), len(toks0)) self.assertNotEqual(toks[1], toks2[1]) # But at least the first non-special tokens should differ def test_add_tokens_tokenizer(self): tokenizer = self.get_tokenizer() vocab_size = tokenizer.vocab_size all_size = len(tokenizer) self.assertNotEqual(vocab_size, 0) self.assertEqual(vocab_size, all_size) new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"] added_toks = tokenizer.add_tokens(new_toks) vocab_size_2 = tokenizer.vocab_size all_size_2 = len(tokenizer) self.assertNotEqual(vocab_size_2, 0) self.assertEqual(vocab_size, vocab_size_2) self.assertEqual(added_toks, len(new_toks)) self.assertEqual(all_size_2, all_size + len(new_toks)) tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False) self.assertGreaterEqual(len(tokens), 4) self.assertGreater(tokens[0], tokenizer.vocab_size - 1) self.assertGreater(tokens[-2], tokenizer.vocab_size - 1) new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} added_toks_2 = tokenizer.add_special_tokens(new_toks_2) vocab_size_3 = tokenizer.vocab_size all_size_3 = len(tokenizer) self.assertNotEqual(vocab_size_3, 0) self.assertEqual(vocab_size, vocab_size_3) self.assertEqual(added_toks_2, len(new_toks_2)) self.assertEqual(all_size_3, all_size_2 + len(new_toks_2)) tokens = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False ) self.assertGreaterEqual(len(tokens), 6) self.assertGreater(tokens[0], tokenizer.vocab_size - 1) self.assertGreater(tokens[0], tokens[1]) self.assertGreater(tokens[-2], tokenizer.vocab_size - 1) self.assertGreater(tokens[-2], tokens[-3]) self.assertEqual(tokens[0], tokenizer.eos_token_id) self.assertEqual(tokens[-2], tokenizer.pad_token_id) def test_add_special_tokens(self): tokenizer = self.get_tokenizer() input_text, output_text = self.get_input_output_texts() special_token = "[SPECIAL TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token}) encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False) assert len(encoded_special_token) == 1 text = " ".join([input_text, special_token, output_text]) encoded = tokenizer.encode(text, add_special_tokens=False) input_encoded = tokenizer.encode(input_text, add_special_tokens=False) output_encoded = tokenizer.encode(output_text, add_special_tokens=False) special_token_id = tokenizer.encode(special_token, add_special_tokens=False) assert encoded == input_encoded + special_token_id + output_encoded decoded = tokenizer.decode(encoded, skip_special_tokens=True) assert special_token not in decoded def test_required_methods_tokenizer(self): tokenizer = self.get_tokenizer() input_text, output_text = self.get_input_output_texts() tokens = tokenizer.tokenize(input_text) ids = tokenizer.convert_tokens_to_ids(tokens) ids_2 = tokenizer.encode(input_text, add_special_tokens=False) self.assertListEqual(ids, ids_2) tokens_2 = tokenizer.convert_ids_to_tokens(ids) text_2 = tokenizer.decode(ids) self.assertEqual(text_2, output_text) self.assertNotEqual(len(tokens_2), 0) self.assertIsInstance(text_2, str) def test_encode_decode_with_spaces(self): tokenizer = self.get_tokenizer() new_toks = ["[ABC]", "[DEF]", "GHI IHG"] tokenizer.add_tokens(new_toks) input = "[ABC] [DEF] [ABC] GHI IHG [DEF]" encoded = tokenizer.encode(input, add_special_tokens=False) decoded = tokenizer.decode(encoded) self.assertEqual(decoded, input) def test_pretrained_model_lists(self): weights_list = list(self.tokenizer_class.max_model_input_sizes.keys()) weights_lists_2 = [] for file_id, map_list in self.tokenizer_class.pretrained_vocab_files_map.items(): weights_lists_2.append(list(map_list.keys())) for weights_list_2 in weights_lists_2: self.assertListEqual(weights_list, weights_list_2) def test_mask_output(self): tokenizer = self.get_tokenizer() if tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer": seq_0 = "Test this method." seq_1 = "With these inputs." information = tokenizer.encode_plus(seq_0, seq_1, add_special_tokens=True) sequences, mask = information["input_ids"], information["token_type_ids"] self.assertEqual(len(sequences), len(mask)) def test_number_of_added_tokens(self): tokenizer = self.get_tokenizer() seq_0 = "Test this method." seq_1 = "With these inputs." sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=False) attached_sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=True) # Method is implemented (e.g. not GPT-2) if len(attached_sequences) != 2: self.assertEqual(tokenizer.num_added_tokens(pair=True), len(attached_sequences) - len(sequences)) def test_maximum_encoding_length_single_input(self): tokenizer = self.get_tokenizer() seq_0 = "This is a sentence to be encoded." stride = 2 sequence = tokenizer.encode(seq_0, add_special_tokens=False) num_added_tokens = tokenizer.num_added_tokens() total_length = len(sequence) + num_added_tokens information = tokenizer.encode_plus( seq_0, max_length=total_length - 2, add_special_tokens=True, stride=stride, return_overflowing_tokens=True, ) truncated_sequence = information["input_ids"] overflowing_tokens = information["overflowing_tokens"] self.assertEqual(len(overflowing_tokens), 2 + stride) self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :]) self.assertEqual(len(truncated_sequence), total_length - 2) self.assertEqual(truncated_sequence, tokenizer.build_inputs_with_special_tokens(sequence[:-2])) def test_maximum_encoding_length_pair_input(self): tokenizer = self.get_tokenizer() seq_0 = "This is a sentence to be encoded." seq_1 = "This is another sentence to be encoded." stride = 2 sequence_0_no_special_tokens = tokenizer.encode(seq_0, add_special_tokens=False) sequence_1_no_special_tokens = tokenizer.encode(seq_1, add_special_tokens=False) sequence = tokenizer.encode(seq_0, seq_1, add_special_tokens=True) truncated_second_sequence = tokenizer.build_inputs_with_special_tokens( tokenizer.encode(seq_0, add_special_tokens=False), tokenizer.encode(seq_1, add_special_tokens=False)[:-2], ) information = tokenizer.encode_plus( seq_0, seq_1, max_length=len(sequence) - 2, add_special_tokens=True, stride=stride, truncation_strategy="only_second", return_overflowing_tokens=True, ) information_first_truncated = tokenizer.encode_plus( seq_0, seq_1, max_length=len(sequence) - 2, add_special_tokens=True, stride=stride, truncation_strategy="only_first", return_overflowing_tokens=True, ) truncated_sequence = information["input_ids"] overflowing_tokens = information["overflowing_tokens"] overflowing_tokens_first_truncated = information_first_truncated["overflowing_tokens"] self.assertEqual(len(overflowing_tokens), 2 + stride) self.assertEqual(overflowing_tokens, sequence_1_no_special_tokens[-(2 + stride) :]) self.assertEqual(overflowing_tokens_first_truncated, sequence_0_no_special_tokens[-(2 + stride) :]) self.assertEqual(len(truncated_sequence), len(sequence) - 2) self.assertEqual(truncated_sequence, truncated_second_sequence) def test_encode_input_type(self): tokenizer = self.get_tokenizer() sequence = "Let's encode this sequence" tokens = tokenizer.tokenize(sequence) input_ids = tokenizer.convert_tokens_to_ids(tokens) formatted_input = tokenizer.encode(sequence, add_special_tokens=True) self.assertEqual(tokenizer.encode(tokens, add_special_tokens=True), formatted_input) self.assertEqual(tokenizer.encode(input_ids, add_special_tokens=True), formatted_input) def test_special_tokens_mask(self): tokenizer = self.get_tokenizer() sequence_0 = "Encode this." sequence_1 = "This one too please." # Testing single inputs encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False) encoded_sequence_dict = tokenizer.encode_plus( sequence_0, add_special_tokens=True, return_special_tokens_mask=True ) encoded_sequence_w_special = encoded_sequence_dict["input_ids"] special_tokens_mask = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special)) filtered_sequence = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special) ] filtered_sequence = [x for x in filtered_sequence if x is not None] self.assertEqual(encoded_sequence, filtered_sequence) # Testing inputs pairs encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False) + tokenizer.encode( sequence_1, add_special_tokens=False ) encoded_sequence_dict = tokenizer.encode_plus( sequence_0, sequence_1, add_special_tokens=True, return_special_tokens_mask=True ) encoded_sequence_w_special = encoded_sequence_dict["input_ids"] special_tokens_mask = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special)) filtered_sequence = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special) ] filtered_sequence = [x for x in filtered_sequence if x is not None] self.assertEqual(encoded_sequence, filtered_sequence) # Testing with already existing special tokens if tokenizer.cls_token_id == tokenizer.unk_token_id and tokenizer.cls_token_id == tokenizer.unk_token_id: tokenizer.add_special_tokens({"cls_token": "", "sep_token": ""}) encoded_sequence_dict = tokenizer.encode_plus( sequence_0, add_special_tokens=True, return_special_tokens_mask=True ) encoded_sequence_w_special = encoded_sequence_dict["input_ids"] special_tokens_mask_orig = encoded_sequence_dict["special_tokens_mask"] special_tokens_mask = tokenizer.get_special_tokens_mask( encoded_sequence_w_special, already_has_special_tokens=True ) self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special)) self.assertEqual(special_tokens_mask_orig, special_tokens_mask) def test_padding_to_max_length(self): tokenizer = self.get_tokenizer() sequence = "Sequence" padding_size = 10 padding_idx = tokenizer.pad_token_id # RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True tokenizer.padding_side = "right" encoded_sequence = tokenizer.encode(sequence) sequence_length = len(encoded_sequence) padded_sequence = tokenizer.encode(sequence, max_length=sequence_length + padding_size, pad_to_max_length=True) padded_sequence_length = len(padded_sequence) assert sequence_length + padding_size == padded_sequence_length assert encoded_sequence + [padding_idx] * padding_size == padded_sequence # LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True tokenizer.padding_side = "left" encoded_sequence = tokenizer.encode(sequence) sequence_length = len(encoded_sequence) padded_sequence = tokenizer.encode(sequence, max_length=sequence_length + padding_size, pad_to_max_length=True) padded_sequence_length = len(padded_sequence) assert sequence_length + padding_size == padded_sequence_length assert [padding_idx] * padding_size + encoded_sequence == padded_sequence # RIGHT & LEFT PADDING - Check that nothing is done when a maximum length is not specified encoded_sequence = tokenizer.encode(sequence) sequence_length = len(encoded_sequence) tokenizer.padding_side = "right" padded_sequence_right = tokenizer.encode(sequence, pad_to_max_length=True) padded_sequence_right_length = len(padded_sequence_right) tokenizer.padding_side = "left" padded_sequence_left = tokenizer.encode(sequence, pad_to_max_length=True) padded_sequence_left_length = len(padded_sequence_left) assert sequence_length == padded_sequence_right_length assert encoded_sequence == padded_sequence_right assert sequence_length == padded_sequence_left_length assert encoded_sequence == padded_sequence_left def test_encode_plus_with_padding(self): tokenizer = self.get_tokenizer() sequence = "Sequence" padding_size = 10 padding_idx = tokenizer.pad_token_id token_type_padding_idx = tokenizer.pad_token_type_id encoded_sequence = tokenizer.encode_plus(sequence, return_special_tokens_mask=True) input_ids = encoded_sequence["input_ids"] token_type_ids = encoded_sequence["token_type_ids"] attention_mask = encoded_sequence["attention_mask"] special_tokens_mask = encoded_sequence["special_tokens_mask"] sequence_length = len(input_ids) # Test right padding tokenizer.padding_side = "right" padded_sequence = tokenizer.encode_plus( sequence, max_length=sequence_length + padding_size, pad_to_max_length=True, return_special_tokens_mask=True, ) padded_input_ids = padded_sequence["input_ids"] padded_token_type_ids = padded_sequence["token_type_ids"] padded_attention_mask = padded_sequence["attention_mask"] padded_special_tokens_mask = padded_sequence["special_tokens_mask"] padded_sequence_length = len(padded_input_ids) assert sequence_length + padding_size == padded_sequence_length assert input_ids + [padding_idx] * padding_size == padded_input_ids assert token_type_ids + [token_type_padding_idx] * padding_size == padded_token_type_ids assert attention_mask + [0] * padding_size == padded_attention_mask assert special_tokens_mask + [1] * padding_size == padded_special_tokens_mask # Test left padding tokenizer.padding_side = "left" padded_sequence = tokenizer.encode_plus( sequence, max_length=sequence_length + padding_size, pad_to_max_length=True, return_special_tokens_mask=True, ) padded_input_ids = padded_sequence["input_ids"] padded_token_type_ids = padded_sequence["token_type_ids"] padded_attention_mask = padded_sequence["attention_mask"] padded_special_tokens_mask = padded_sequence["special_tokens_mask"] padded_sequence_length = len(padded_input_ids) assert sequence_length + padding_size == padded_sequence_length assert [padding_idx] * padding_size + input_ids == padded_input_ids assert [token_type_padding_idx] * padding_size + token_type_ids == padded_token_type_ids assert [0] * padding_size + attention_mask == padded_attention_mask assert [1] * padding_size + special_tokens_mask == padded_special_tokens_mask