Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import unittest | |
from typing import Iterable | |
from transformers import pipeline | |
from .utils import require_tf, require_torch | |
QA_FINETUNED_MODELS = { | |
("bert-base-uncased", "bert-large-uncased-whole-word-masking-finetuned-squad", None), | |
("bert-base-cased", "bert-large-cased-whole-word-masking-finetuned-squad", None), | |
("bert-base-uncased", "distilbert-base-uncased-distilled-squad", None), | |
} | |
TF_QA_FINETUNED_MODELS = { | |
("bert-base-uncased", "bert-large-uncased-whole-word-masking-finetuned-squad", None), | |
("bert-base-cased", "bert-large-cased-whole-word-masking-finetuned-squad", None), | |
("bert-base-uncased", "distilbert-base-uncased-distilled-squad", None), | |
} | |
TF_NER_FINETUNED_MODELS = { | |
( | |
"bert-base-cased", | |
"dbmdz/bert-large-cased-finetuned-conll03-english", | |
"dbmdz/bert-large-cased-finetuned-conll03-english", | |
) | |
} | |
NER_FINETUNED_MODELS = { | |
( | |
"bert-base-cased", | |
"dbmdz/bert-large-cased-finetuned-conll03-english", | |
"dbmdz/bert-large-cased-finetuned-conll03-english", | |
) | |
} | |
FEATURE_EXTRACT_FINETUNED_MODELS = { | |
("bert-base-cased", "bert-base-cased", None), | |
# ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2 | |
("distilbert-base-uncased", "distilbert-base-uncased", None), | |
} | |
TF_FEATURE_EXTRACT_FINETUNED_MODELS = { | |
("bert-base-cased", "bert-base-cased", None), | |
# ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2 | |
("distilbert-base-uncased", "distilbert-base-uncased", None), | |
} | |
TF_TEXT_CLASSIF_FINETUNED_MODELS = { | |
( | |
"bert-base-uncased", | |
"distilbert-base-uncased-finetuned-sst-2-english", | |
"distilbert-base-uncased-finetuned-sst-2-english", | |
) | |
} | |
TEXT_CLASSIF_FINETUNED_MODELS = { | |
( | |
"bert-base-uncased", | |
"distilbert-base-uncased-finetuned-sst-2-english", | |
"distilbert-base-uncased-finetuned-sst-2-english", | |
) | |
} | |
class MonoColumnInputTestCase(unittest.TestCase): | |
def _test_mono_column_pipeline(self, nlp, valid_inputs: list, invalid_inputs: list, output_keys: Iterable[str]): | |
self.assertIsNotNone(nlp) | |
mono_result = nlp(valid_inputs[0]) | |
self.assertIsInstance(mono_result, list) | |
self.assertIsInstance(mono_result[0], (dict, list)) | |
if isinstance(mono_result[0], list): | |
mono_result = mono_result[0] | |
for key in output_keys: | |
self.assertIn(key, mono_result[0]) | |
multi_result = nlp(valid_inputs) | |
self.assertIsInstance(multi_result, list) | |
self.assertIsInstance(multi_result[0], (dict, list)) | |
if isinstance(multi_result[0], list): | |
multi_result = multi_result[0] | |
for result in multi_result: | |
for key in output_keys: | |
self.assertIn(key, result) | |
self.assertRaises(Exception, nlp, invalid_inputs) | |
def test_ner(self): | |
mandatory_keys = {"entity", "word", "score"} | |
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"] | |
invalid_inputs = [None] | |
for tokenizer, model, config in NER_FINETUNED_MODELS: | |
nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer) | |
self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys) | |
def test_tf_ner(self): | |
mandatory_keys = {"entity", "word", "score"} | |
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"] | |
invalid_inputs = [None] | |
for tokenizer, model, config in TF_NER_FINETUNED_MODELS: | |
nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer) | |
self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys) | |
def test_sentiment_analysis(self): | |
mandatory_keys = {"label"} | |
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"] | |
invalid_inputs = [None] | |
for tokenizer, model, config in TEXT_CLASSIF_FINETUNED_MODELS: | |
nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer) | |
self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys) | |
def test_tf_sentiment_analysis(self): | |
mandatory_keys = {"label"} | |
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"] | |
invalid_inputs = [None] | |
for tokenizer, model, config in TF_TEXT_CLASSIF_FINETUNED_MODELS: | |
nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer) | |
self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys) | |
def test_features_extraction(self): | |
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"] | |
invalid_inputs = [None] | |
for tokenizer, model, config in FEATURE_EXTRACT_FINETUNED_MODELS: | |
nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer) | |
self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {}) | |
def test_tf_features_extraction(self): | |
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"] | |
invalid_inputs = [None] | |
for tokenizer, model, config in TF_FEATURE_EXTRACT_FINETUNED_MODELS: | |
nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer) | |
self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {}) | |
class MultiColumnInputTestCase(unittest.TestCase): | |
def _test_multicolumn_pipeline(self, nlp, valid_inputs: list, invalid_inputs: list, output_keys: Iterable[str]): | |
self.assertIsNotNone(nlp) | |
mono_result = nlp(valid_inputs[0]) | |
self.assertIsInstance(mono_result, dict) | |
for key in output_keys: | |
self.assertIn(key, mono_result) | |
multi_result = nlp(valid_inputs) | |
self.assertIsInstance(multi_result, list) | |
self.assertIsInstance(multi_result[0], dict) | |
for result in multi_result: | |
for key in output_keys: | |
self.assertIn(key, result) | |
self.assertRaises(Exception, nlp, invalid_inputs[0]) | |
self.assertRaises(Exception, nlp, invalid_inputs) | |
def test_question_answering(self): | |
mandatory_output_keys = {"score", "answer", "start", "end"} | |
valid_samples = [ | |
{"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."}, | |
{ | |
"question": "In what field is HuggingFace working ?", | |
"context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.", | |
}, | |
] | |
invalid_samples = [ | |
{"question": "", "context": "This is a test to try empty question edge case"}, | |
{"question": None, "context": "This is a test to try empty question edge case"}, | |
{"question": "What is does with empty context ?", "context": ""}, | |
{"question": "What is does with empty context ?", "context": None}, | |
] | |
for tokenizer, model, config in QA_FINETUNED_MODELS: | |
nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer) | |
self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys) | |
def test_tf_question_answering(self): | |
mandatory_output_keys = {"score", "answer", "start", "end"} | |
valid_samples = [ | |
{"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."}, | |
{ | |
"question": "In what field is HuggingFace working ?", | |
"context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.", | |
}, | |
] | |
invalid_samples = [ | |
{"question": "", "context": "This is a test to try empty question edge case"}, | |
{"question": None, "context": "This is a test to try empty question edge case"}, | |
{"question": "What is does with empty context ?", "context": ""}, | |
{"question": "What is does with empty context ?", "context": None}, | |
] | |
for tokenizer, model, config in TF_QA_FINETUNED_MODELS: | |
nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer) | |
self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys) | |