File size: 8,910 Bytes
63858e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import unittest
from typing import Iterable

from transformers import pipeline

from .utils import require_tf, require_torch


QA_FINETUNED_MODELS = {
    ("bert-base-uncased", "bert-large-uncased-whole-word-masking-finetuned-squad", None),
    ("bert-base-cased", "bert-large-cased-whole-word-masking-finetuned-squad", None),
    ("bert-base-uncased", "distilbert-base-uncased-distilled-squad", None),
}

TF_QA_FINETUNED_MODELS = {
    ("bert-base-uncased", "bert-large-uncased-whole-word-masking-finetuned-squad", None),
    ("bert-base-cased", "bert-large-cased-whole-word-masking-finetuned-squad", None),
    ("bert-base-uncased", "distilbert-base-uncased-distilled-squad", None),
}

TF_NER_FINETUNED_MODELS = {
    (
        "bert-base-cased",
        "dbmdz/bert-large-cased-finetuned-conll03-english",
        "dbmdz/bert-large-cased-finetuned-conll03-english",
    )
}

NER_FINETUNED_MODELS = {
    (
        "bert-base-cased",
        "dbmdz/bert-large-cased-finetuned-conll03-english",
        "dbmdz/bert-large-cased-finetuned-conll03-english",
    )
}

FEATURE_EXTRACT_FINETUNED_MODELS = {
    ("bert-base-cased", "bert-base-cased", None),
    # ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2
    ("distilbert-base-uncased", "distilbert-base-uncased", None),
}

TF_FEATURE_EXTRACT_FINETUNED_MODELS = {
    ("bert-base-cased", "bert-base-cased", None),
    # ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2
    ("distilbert-base-uncased", "distilbert-base-uncased", None),
}

TF_TEXT_CLASSIF_FINETUNED_MODELS = {
    (
        "bert-base-uncased",
        "distilbert-base-uncased-finetuned-sst-2-english",
        "distilbert-base-uncased-finetuned-sst-2-english",
    )
}

TEXT_CLASSIF_FINETUNED_MODELS = {
    (
        "bert-base-uncased",
        "distilbert-base-uncased-finetuned-sst-2-english",
        "distilbert-base-uncased-finetuned-sst-2-english",
    )
}


class MonoColumnInputTestCase(unittest.TestCase):
    def _test_mono_column_pipeline(self, nlp, valid_inputs: list, invalid_inputs: list, output_keys: Iterable[str]):
        self.assertIsNotNone(nlp)

        mono_result = nlp(valid_inputs[0])
        self.assertIsInstance(mono_result, list)
        self.assertIsInstance(mono_result[0], (dict, list))

        if isinstance(mono_result[0], list):
            mono_result = mono_result[0]

        for key in output_keys:
            self.assertIn(key, mono_result[0])

        multi_result = nlp(valid_inputs)
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], (dict, list))

        if isinstance(multi_result[0], list):
            multi_result = multi_result[0]

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)

        self.assertRaises(Exception, nlp, invalid_inputs)

    @require_torch
    def test_ner(self):
        mandatory_keys = {"entity", "word", "score"}
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
        invalid_inputs = [None]
        for tokenizer, model, config in NER_FINETUNED_MODELS:
            nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer)
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)

    @require_tf
    def test_tf_ner(self):
        mandatory_keys = {"entity", "word", "score"}
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
        invalid_inputs = [None]
        for tokenizer, model, config in TF_NER_FINETUNED_MODELS:
            nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer)
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)

    @require_torch
    def test_sentiment_analysis(self):
        mandatory_keys = {"label"}
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
        invalid_inputs = [None]
        for tokenizer, model, config in TEXT_CLASSIF_FINETUNED_MODELS:
            nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer)
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)

    @require_tf
    def test_tf_sentiment_analysis(self):
        mandatory_keys = {"label"}
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
        invalid_inputs = [None]
        for tokenizer, model, config in TF_TEXT_CLASSIF_FINETUNED_MODELS:
            nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer)
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)

    @require_torch
    def test_features_extraction(self):
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
        invalid_inputs = [None]
        for tokenizer, model, config in FEATURE_EXTRACT_FINETUNED_MODELS:
            nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer)
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {})

    @require_tf
    def test_tf_features_extraction(self):
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
        invalid_inputs = [None]
        for tokenizer, model, config in TF_FEATURE_EXTRACT_FINETUNED_MODELS:
            nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer)
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {})


class MultiColumnInputTestCase(unittest.TestCase):
    def _test_multicolumn_pipeline(self, nlp, valid_inputs: list, invalid_inputs: list, output_keys: Iterable[str]):
        self.assertIsNotNone(nlp)

        mono_result = nlp(valid_inputs[0])
        self.assertIsInstance(mono_result, dict)

        for key in output_keys:
            self.assertIn(key, mono_result)

        multi_result = nlp(valid_inputs)
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], dict)

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)

        self.assertRaises(Exception, nlp, invalid_inputs[0])
        self.assertRaises(Exception, nlp, invalid_inputs)

    @require_torch
    def test_question_answering(self):
        mandatory_output_keys = {"score", "answer", "start", "end"}
        valid_samples = [
            {"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."},
            {
                "question": "In what field is HuggingFace working ?",
                "context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.",
            },
        ]
        invalid_samples = [
            {"question": "", "context": "This is a test to try empty question edge case"},
            {"question": None, "context": "This is a test to try empty question edge case"},
            {"question": "What is does with empty context ?", "context": ""},
            {"question": "What is does with empty context ?", "context": None},
        ]

        for tokenizer, model, config in QA_FINETUNED_MODELS:
            nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer)
            self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys)

    @require_tf
    def test_tf_question_answering(self):
        mandatory_output_keys = {"score", "answer", "start", "end"}
        valid_samples = [
            {"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."},
            {
                "question": "In what field is HuggingFace working ?",
                "context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.",
            },
        ]
        invalid_samples = [
            {"question": "", "context": "This is a test to try empty question edge case"},
            {"question": None, "context": "This is a test to try empty question edge case"},
            {"question": "What is does with empty context ?", "context": ""},
            {"question": "What is does with empty context ?", "context": None},
        ]

        for tokenizer, model, config in TF_QA_FINETUNED_MODELS:
            nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer)
            self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys)