exbert / server /transformers /tests /test_pipelines.py
bhoov's picture
git subrepo clone (merge) --branch=exbert-mods https://github.com/bhoov/transformers.git server/transformers
75466df
raw
history blame
12.3 kB
import unittest
from typing import Iterable, List, Optional
from transformers import pipeline
from transformers.pipelines import Pipeline
from .utils import require_tf, require_torch
QA_FINETUNED_MODELS = {
("bert-base-uncased", "bert-large-uncased-whole-word-masking-finetuned-squad", None),
("bert-base-cased", "bert-large-cased-whole-word-masking-finetuned-squad", None),
("bert-base-uncased", "distilbert-base-uncased-distilled-squad", None),
}
TF_QA_FINETUNED_MODELS = {
("bert-base-uncased", "bert-large-uncased-whole-word-masking-finetuned-squad", None),
("bert-base-cased", "bert-large-cased-whole-word-masking-finetuned-squad", None),
("bert-base-uncased", "distilbert-base-uncased-distilled-squad", None),
}
TF_NER_FINETUNED_MODELS = {
(
"bert-base-cased",
"dbmdz/bert-large-cased-finetuned-conll03-english",
"dbmdz/bert-large-cased-finetuned-conll03-english",
)
}
NER_FINETUNED_MODELS = {
(
"bert-base-cased",
"dbmdz/bert-large-cased-finetuned-conll03-english",
"dbmdz/bert-large-cased-finetuned-conll03-english",
)
}
FEATURE_EXTRACT_FINETUNED_MODELS = {
("bert-base-cased", "bert-base-cased", None),
# ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2
("distilbert-base-uncased", "distilbert-base-uncased", None),
}
TF_FEATURE_EXTRACT_FINETUNED_MODELS = {
("bert-base-cased", "bert-base-cased", None),
# ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2
("distilbert-base-uncased", "distilbert-base-uncased", None),
}
TF_TEXT_CLASSIF_FINETUNED_MODELS = {
(
"bert-base-uncased",
"distilbert-base-uncased-finetuned-sst-2-english",
"distilbert-base-uncased-finetuned-sst-2-english",
)
}
TEXT_CLASSIF_FINETUNED_MODELS = {
(
"bert-base-uncased",
"distilbert-base-uncased-finetuned-sst-2-english",
"distilbert-base-uncased-finetuned-sst-2-english",
)
}
FILL_MASK_FINETUNED_MODELS = {
("distilroberta-base", "distilroberta-base", None),
}
TF_FILL_MASK_FINETUNED_MODELS = {
("distilroberta-base", "distilroberta-base", None),
}
class MonoColumnInputTestCase(unittest.TestCase):
def _test_mono_column_pipeline(
self,
nlp: Pipeline,
valid_inputs: List,
invalid_inputs: List,
output_keys: Iterable[str],
expected_multi_result: Optional[List] = None,
expected_check_keys: Optional[List[str]] = None,
):
self.assertIsNotNone(nlp)
mono_result = nlp(valid_inputs[0])
self.assertIsInstance(mono_result, list)
self.assertIsInstance(mono_result[0], (dict, list))
if isinstance(mono_result[0], list):
mono_result = mono_result[0]
for key in output_keys:
self.assertIn(key, mono_result[0])
multi_result = nlp(valid_inputs)
self.assertIsInstance(multi_result, list)
self.assertIsInstance(multi_result[0], (dict, list))
if expected_multi_result is not None:
for result, expect in zip(multi_result, expected_multi_result):
for key in expected_check_keys or []:
self.assertEqual(
set([o[key] for o in result]), set([o[key] for o in expect]),
)
if isinstance(multi_result[0], list):
multi_result = multi_result[0]
for result in multi_result:
for key in output_keys:
self.assertIn(key, result)
self.assertRaises(Exception, nlp, invalid_inputs)
@require_torch
def test_ner(self):
mandatory_keys = {"entity", "word", "score"}
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
invalid_inputs = [None]
for tokenizer, model, config in NER_FINETUNED_MODELS:
nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer)
self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
@require_tf
def test_tf_ner(self):
mandatory_keys = {"entity", "word", "score"}
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
invalid_inputs = [None]
for tokenizer, model, config in TF_NER_FINETUNED_MODELS:
nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer)
self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
@require_torch
def test_sentiment_analysis(self):
mandatory_keys = {"label", "score"}
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
invalid_inputs = [None]
for tokenizer, model, config in TEXT_CLASSIF_FINETUNED_MODELS:
nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer)
self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
@require_tf
def test_tf_sentiment_analysis(self):
mandatory_keys = {"label", "score"}
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
invalid_inputs = [None]
for tokenizer, model, config in TF_TEXT_CLASSIF_FINETUNED_MODELS:
nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer)
self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
@require_torch
def test_feature_extraction(self):
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
invalid_inputs = [None]
for tokenizer, model, config in FEATURE_EXTRACT_FINETUNED_MODELS:
nlp = pipeline(task="feature-extraction", model=model, config=config, tokenizer=tokenizer)
self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {})
@require_tf
def test_tf_feature_extraction(self):
valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
invalid_inputs = [None]
for tokenizer, model, config in TF_FEATURE_EXTRACT_FINETUNED_MODELS:
nlp = pipeline(task="feature-extraction", model=model, config=config, tokenizer=tokenizer)
self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {})
@require_torch
def test_fill_mask(self):
mandatory_keys = {"sequence", "score", "token"}
valid_inputs = [
"My name is <mask>",
"The largest city in France is <mask>",
]
invalid_inputs = [None]
expected_multi_result = [
[
{"score": 0.008698059245944023, "sequence": "<s>My name is John</s>", "token": 610},
{"score": 0.007750614080578089, "sequence": "<s>My name is Chris</s>", "token": 1573},
],
[
{"score": 0.2721288502216339, "sequence": "<s>The largest city in France is Paris</s>", "token": 2201},
{
"score": 0.19764970242977142,
"sequence": "<s>The largest city in France is Lyon</s>",
"token": 12790,
},
],
]
for tokenizer, model, config in FILL_MASK_FINETUNED_MODELS:
nlp = pipeline(task="fill-mask", model=model, config=config, tokenizer=tokenizer, topk=2)
self._test_mono_column_pipeline(
nlp,
valid_inputs,
invalid_inputs,
mandatory_keys,
expected_multi_result=expected_multi_result,
expected_check_keys=["sequence"],
)
@require_tf
def test_tf_fill_mask(self):
mandatory_keys = {"sequence", "score", "token"}
valid_inputs = [
"My name is <mask>",
"The largest city in France is <mask>",
]
invalid_inputs = [None]
expected_multi_result = [
[
{"score": 0.008698059245944023, "sequence": "<s>My name is John</s>", "token": 610},
{"score": 0.007750614080578089, "sequence": "<s>My name is Chris</s>", "token": 1573},
],
[
{"score": 0.2721288502216339, "sequence": "<s>The largest city in France is Paris</s>", "token": 2201},
{
"score": 0.19764970242977142,
"sequence": "<s>The largest city in France is Lyon</s>",
"token": 12790,
},
],
]
for tokenizer, model, config in TF_FILL_MASK_FINETUNED_MODELS:
nlp = pipeline(task="fill-mask", model=model, config=config, tokenizer=tokenizer, topk=2)
self._test_mono_column_pipeline(
nlp,
valid_inputs,
invalid_inputs,
mandatory_keys,
expected_multi_result=expected_multi_result,
expected_check_keys=["sequence"],
)
class MultiColumnInputTestCase(unittest.TestCase):
def _test_multicolumn_pipeline(self, nlp, valid_inputs: list, invalid_inputs: list, output_keys: Iterable[str]):
self.assertIsNotNone(nlp)
mono_result = nlp(valid_inputs[0])
self.assertIsInstance(mono_result, dict)
for key in output_keys:
self.assertIn(key, mono_result)
multi_result = nlp(valid_inputs)
self.assertIsInstance(multi_result, list)
self.assertIsInstance(multi_result[0], dict)
for result in multi_result:
for key in output_keys:
self.assertIn(key, result)
self.assertRaises(Exception, nlp, invalid_inputs[0])
self.assertRaises(Exception, nlp, invalid_inputs)
@require_torch
def test_question_answering(self):
mandatory_output_keys = {"score", "answer", "start", "end"}
valid_samples = [
{"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."},
{
"question": "In what field is HuggingFace working ?",
"context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.",
},
]
invalid_samples = [
{"question": "", "context": "This is a test to try empty question edge case"},
{"question": None, "context": "This is a test to try empty question edge case"},
{"question": "What is does with empty context ?", "context": ""},
{"question": "What is does with empty context ?", "context": None},
]
for tokenizer, model, config in QA_FINETUNED_MODELS:
nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer)
self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys)
@require_tf
def test_tf_question_answering(self):
mandatory_output_keys = {"score", "answer", "start", "end"}
valid_samples = [
{"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."},
{
"question": "In what field is HuggingFace working ?",
"context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.",
},
]
invalid_samples = [
{"question": "", "context": "This is a test to try empty question edge case"},
{"question": None, "context": "This is a test to try empty question edge case"},
{"question": "What is does with empty context ?", "context": ""},
{"question": "What is does with empty context ?", "context": None},
]
for tokenizer, model, config in TF_QA_FINETUNED_MODELS:
nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer)
self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys)