import unittest from typing import Iterable, List, Optional from transformers import pipeline from transformers.pipelines import Pipeline from .utils import require_tf, require_torch QA_FINETUNED_MODELS = { ("bert-base-uncased", "bert-large-uncased-whole-word-masking-finetuned-squad", None), ("bert-base-cased", "bert-large-cased-whole-word-masking-finetuned-squad", None), ("bert-base-uncased", "distilbert-base-uncased-distilled-squad", None), } TF_QA_FINETUNED_MODELS = { ("bert-base-uncased", "bert-large-uncased-whole-word-masking-finetuned-squad", None), ("bert-base-cased", "bert-large-cased-whole-word-masking-finetuned-squad", None), ("bert-base-uncased", "distilbert-base-uncased-distilled-squad", None), } TF_NER_FINETUNED_MODELS = { ( "bert-base-cased", "dbmdz/bert-large-cased-finetuned-conll03-english", "dbmdz/bert-large-cased-finetuned-conll03-english", ) } NER_FINETUNED_MODELS = { ( "bert-base-cased", "dbmdz/bert-large-cased-finetuned-conll03-english", "dbmdz/bert-large-cased-finetuned-conll03-english", ) } FEATURE_EXTRACT_FINETUNED_MODELS = { ("bert-base-cased", "bert-base-cased", None), # ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2 ("distilbert-base-uncased", "distilbert-base-uncased", None), } TF_FEATURE_EXTRACT_FINETUNED_MODELS = { ("bert-base-cased", "bert-base-cased", None), # ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2 ("distilbert-base-uncased", "distilbert-base-uncased", None), } TF_TEXT_CLASSIF_FINETUNED_MODELS = { ( "bert-base-uncased", "distilbert-base-uncased-finetuned-sst-2-english", "distilbert-base-uncased-finetuned-sst-2-english", ) } TEXT_CLASSIF_FINETUNED_MODELS = { ( "bert-base-uncased", "distilbert-base-uncased-finetuned-sst-2-english", "distilbert-base-uncased-finetuned-sst-2-english", ) } FILL_MASK_FINETUNED_MODELS = { ("distilroberta-base", "distilroberta-base", None), } TF_FILL_MASK_FINETUNED_MODELS = { ("distilroberta-base", "distilroberta-base", None), } class MonoColumnInputTestCase(unittest.TestCase): def _test_mono_column_pipeline( self, nlp: Pipeline, valid_inputs: List, invalid_inputs: List, output_keys: Iterable[str], expected_multi_result: Optional[List] = None, expected_check_keys: Optional[List[str]] = None, ): self.assertIsNotNone(nlp) mono_result = nlp(valid_inputs[0]) self.assertIsInstance(mono_result, list) self.assertIsInstance(mono_result[0], (dict, list)) if isinstance(mono_result[0], list): mono_result = mono_result[0] for key in output_keys: self.assertIn(key, mono_result[0]) multi_result = nlp(valid_inputs) self.assertIsInstance(multi_result, list) self.assertIsInstance(multi_result[0], (dict, list)) if expected_multi_result is not None: for result, expect in zip(multi_result, expected_multi_result): for key in expected_check_keys or []: self.assertEqual( set([o[key] for o in result]), set([o[key] for o in expect]), ) if isinstance(multi_result[0], list): multi_result = multi_result[0] for result in multi_result: for key in output_keys: self.assertIn(key, result) self.assertRaises(Exception, nlp, invalid_inputs) @require_torch def test_ner(self): mandatory_keys = {"entity", "word", "score"} valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"] invalid_inputs = [None] for tokenizer, model, config in NER_FINETUNED_MODELS: nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer) self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys) @require_tf def test_tf_ner(self): mandatory_keys = {"entity", "word", "score"} valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"] invalid_inputs = [None] for tokenizer, model, config in TF_NER_FINETUNED_MODELS: nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer) self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys) @require_torch def test_sentiment_analysis(self): mandatory_keys = {"label", "score"} valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"] invalid_inputs = [None] for tokenizer, model, config in TEXT_CLASSIF_FINETUNED_MODELS: nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer) self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys) @require_tf def test_tf_sentiment_analysis(self): mandatory_keys = {"label", "score"} valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"] invalid_inputs = [None] for tokenizer, model, config in TF_TEXT_CLASSIF_FINETUNED_MODELS: nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer) self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys) @require_torch def test_feature_extraction(self): valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"] invalid_inputs = [None] for tokenizer, model, config in FEATURE_EXTRACT_FINETUNED_MODELS: nlp = pipeline(task="feature-extraction", model=model, config=config, tokenizer=tokenizer) self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {}) @require_tf def test_tf_feature_extraction(self): valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"] invalid_inputs = [None] for tokenizer, model, config in TF_FEATURE_EXTRACT_FINETUNED_MODELS: nlp = pipeline(task="feature-extraction", model=model, config=config, tokenizer=tokenizer) self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {}) @require_torch def test_fill_mask(self): mandatory_keys = {"sequence", "score", "token"} valid_inputs = [ "My name is ", "The largest city in France is ", ] invalid_inputs = [None] expected_multi_result = [ [ {"score": 0.008698059245944023, "sequence": "My name is John", "token": 610}, {"score": 0.007750614080578089, "sequence": "My name is Chris", "token": 1573}, ], [ {"score": 0.2721288502216339, "sequence": "The largest city in France is Paris", "token": 2201}, { "score": 0.19764970242977142, "sequence": "The largest city in France is Lyon", "token": 12790, }, ], ] for tokenizer, model, config in FILL_MASK_FINETUNED_MODELS: nlp = pipeline(task="fill-mask", model=model, config=config, tokenizer=tokenizer, topk=2) self._test_mono_column_pipeline( nlp, valid_inputs, invalid_inputs, mandatory_keys, expected_multi_result=expected_multi_result, expected_check_keys=["sequence"], ) @require_tf def test_tf_fill_mask(self): mandatory_keys = {"sequence", "score", "token"} valid_inputs = [ "My name is ", "The largest city in France is ", ] invalid_inputs = [None] expected_multi_result = [ [ {"score": 0.008698059245944023, "sequence": "My name is John", "token": 610}, {"score": 0.007750614080578089, "sequence": "My name is Chris", "token": 1573}, ], [ {"score": 0.2721288502216339, "sequence": "The largest city in France is Paris", "token": 2201}, { "score": 0.19764970242977142, "sequence": "The largest city in France is Lyon", "token": 12790, }, ], ] for tokenizer, model, config in TF_FILL_MASK_FINETUNED_MODELS: nlp = pipeline(task="fill-mask", model=model, config=config, tokenizer=tokenizer, topk=2) self._test_mono_column_pipeline( nlp, valid_inputs, invalid_inputs, mandatory_keys, expected_multi_result=expected_multi_result, expected_check_keys=["sequence"], ) class MultiColumnInputTestCase(unittest.TestCase): def _test_multicolumn_pipeline(self, nlp, valid_inputs: list, invalid_inputs: list, output_keys: Iterable[str]): self.assertIsNotNone(nlp) mono_result = nlp(valid_inputs[0]) self.assertIsInstance(mono_result, dict) for key in output_keys: self.assertIn(key, mono_result) multi_result = nlp(valid_inputs) self.assertIsInstance(multi_result, list) self.assertIsInstance(multi_result[0], dict) for result in multi_result: for key in output_keys: self.assertIn(key, result) self.assertRaises(Exception, nlp, invalid_inputs[0]) self.assertRaises(Exception, nlp, invalid_inputs) @require_torch def test_question_answering(self): mandatory_output_keys = {"score", "answer", "start", "end"} valid_samples = [ {"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."}, { "question": "In what field is HuggingFace working ?", "context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.", }, ] invalid_samples = [ {"question": "", "context": "This is a test to try empty question edge case"}, {"question": None, "context": "This is a test to try empty question edge case"}, {"question": "What is does with empty context ?", "context": ""}, {"question": "What is does with empty context ?", "context": None}, ] for tokenizer, model, config in QA_FINETUNED_MODELS: nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer) self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys) @require_tf def test_tf_question_answering(self): mandatory_output_keys = {"score", "answer", "start", "end"} valid_samples = [ {"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."}, { "question": "In what field is HuggingFace working ?", "context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.", }, ] invalid_samples = [ {"question": "", "context": "This is a test to try empty question edge case"}, {"question": None, "context": "This is a test to try empty question edge case"}, {"question": "What is does with empty context ?", "context": ""}, {"question": "What is does with empty context ?", "context": None}, ] for tokenizer, model, config in TF_QA_FINETUNED_MODELS: nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer) self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys)