exbert / server /transformers /tests /test_modeling_t5.py
bhoov's picture
git subrepo clone (merge) --branch=exbert-mods https://github.com/bhoov/transformers.git server/transformers
75466df
raw
history blame
8.24 kB
# coding=utf-8
# Copyright 2018 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import is_torch_available
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor
from .utils import CACHE_DIR, require_torch, slow
if is_torch_available():
from transformers import T5Config, T5Model, T5WithLMHeadModel
from transformers.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_MAP
@require_torch
class T5ModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (T5Model, T5WithLMHeadModel) if is_torch_available() else ()
test_pruning = False
test_torchscript = False
test_resize_embeddings = False
is_encoder_decoder = True
class T5ModelTester(object):
def __init__(
self,
parent,
batch_size=13,
encoder_seq_length=7,
decoder_seq_length=9,
is_training=True,
use_attention_mask=True,
use_labels=True,
vocab_size=99,
n_positions=14,
hidden_size=32,
num_hidden_layers=5,
num_attention_heads=4,
d_ff=37,
relative_attention_num_buckets=8,
dropout_rate=0.1,
initializer_factor=0.002,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
self.decoder_seq_length = decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.n_positions = n_positions
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.d_ff = d_ff
self.relative_attention_num_buckets = relative_attention_num_buckets
self.dropout_rate = dropout_rate
self.initializer_factor = initializer_factor
self.scope = scope
def prepare_config_and_inputs(self):
encoder_input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
encoder_attention_mask = None
decoder_attention_mask = None
if self.use_attention_mask:
encoder_attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
decoder_lm_labels = None
if self.use_labels:
decoder_lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = T5Config(
vocab_size=self.vocab_size,
n_positions=self.n_positions,
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
)
return (
config,
encoder_input_ids,
decoder_input_ids,
encoder_attention_mask,
decoder_attention_mask,
decoder_lm_labels,
)
def check_loss_output(self, result):
self.parent.assertListEqual(list(result["loss"].size()), [])
def create_and_check_t5_model(
self,
config,
encoder_input_ids,
decoder_input_ids,
encoder_attention_mask,
decoder_attention_mask,
decoder_lm_labels,
):
model = T5Model(config=config)
model.eval()
decoder_output, encoder_output = model(
encoder_input_ids=encoder_input_ids,
decoder_input_ids=decoder_input_ids,
encoder_attention_mask=encoder_attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
decoder_output, encoder_output = model(
encoder_input_ids=encoder_input_ids, decoder_input_ids=decoder_input_ids
)
result = {
"encoder_output": encoder_output,
"decoder_output": decoder_output,
}
self.parent.assertListEqual(
list(result["encoder_output"].size()), [self.batch_size, self.encoder_seq_length, self.hidden_size]
)
self.parent.assertListEqual(
list(result["decoder_output"].size()), [self.batch_size, self.decoder_seq_length, self.hidden_size]
)
def create_and_check_t5_with_lm_head(
self,
config,
encoder_input_ids,
decoder_input_ids,
encoder_attention_mask,
decoder_attention_mask,
decoder_lm_labels,
):
model = T5WithLMHeadModel(config=config)
model.eval()
outputs = model(
encoder_input_ids=encoder_input_ids,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
decoder_lm_labels=decoder_lm_labels,
)
loss, prediction_scores = outputs[0], outputs[1]
result = {
"loss": loss,
"prediction_scores": prediction_scores,
}
self.parent.assertListEqual(
list(result["prediction_scores"].size()), [self.batch_size, self.decoder_seq_length, self.vocab_size]
)
self.check_loss_output(result)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
encoder_input_ids,
decoder_input_ids,
encoder_attention_mask,
decoder_attention_mask,
decoder_lm_labels,
) = config_and_inputs
inputs_dict = {
"encoder_input_ids": encoder_input_ids,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"encoder_attention_mask": encoder_attention_mask,
}
return config, inputs_dict
def setUp(self):
self.model_tester = T5ModelTest.T5ModelTester(self)
self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_t5_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_t5_model(*config_and_inputs)
def test_with_lm_head(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_t5_with_lm_head(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in list(T5_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
model = T5Model.from_pretrained(model_name, cache_dir=CACHE_DIR)
self.assertIsNotNone(model)