Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
# coding=utf-8 | |
# Copyright 2018 Google T5 Authors and HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from transformers import is_torch_available | |
from .test_configuration_common import ConfigTester | |
from .test_modeling_common import ModelTesterMixin, ids_tensor | |
from .utils import CACHE_DIR, require_torch, slow | |
if is_torch_available(): | |
from transformers import T5Config, T5Model, T5WithLMHeadModel | |
from transformers.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_MAP | |
class T5ModelTest(ModelTesterMixin, unittest.TestCase): | |
all_model_classes = (T5Model, T5WithLMHeadModel) if is_torch_available() else () | |
test_pruning = False | |
test_torchscript = False | |
test_resize_embeddings = False | |
is_encoder_decoder = True | |
class T5ModelTester(object): | |
def __init__( | |
self, | |
parent, | |
batch_size=13, | |
encoder_seq_length=7, | |
decoder_seq_length=9, | |
is_training=True, | |
use_attention_mask=True, | |
use_labels=True, | |
vocab_size=99, | |
n_positions=14, | |
hidden_size=32, | |
num_hidden_layers=5, | |
num_attention_heads=4, | |
d_ff=37, | |
relative_attention_num_buckets=8, | |
dropout_rate=0.1, | |
initializer_factor=0.002, | |
scope=None, | |
): | |
self.parent = parent | |
self.batch_size = batch_size | |
self.encoder_seq_length = encoder_seq_length | |
self.decoder_seq_length = decoder_seq_length | |
self.is_training = is_training | |
self.use_attention_mask = use_attention_mask | |
self.use_labels = use_labels | |
self.vocab_size = vocab_size | |
self.n_positions = n_positions | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.d_ff = d_ff | |
self.relative_attention_num_buckets = relative_attention_num_buckets | |
self.dropout_rate = dropout_rate | |
self.initializer_factor = initializer_factor | |
self.scope = scope | |
def prepare_config_and_inputs(self): | |
encoder_input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) | |
decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) | |
encoder_attention_mask = None | |
decoder_attention_mask = None | |
if self.use_attention_mask: | |
encoder_attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) | |
decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) | |
decoder_lm_labels = None | |
if self.use_labels: | |
decoder_lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) | |
config = T5Config( | |
vocab_size=self.vocab_size, | |
n_positions=self.n_positions, | |
d_model=self.hidden_size, | |
d_ff=self.d_ff, | |
d_kv=self.hidden_size // self.num_attention_heads, | |
num_layers=self.num_hidden_layers, | |
num_heads=self.num_attention_heads, | |
relative_attention_num_buckets=self.relative_attention_num_buckets, | |
dropout_rate=self.dropout_rate, | |
initializer_factor=self.initializer_factor, | |
) | |
return ( | |
config, | |
encoder_input_ids, | |
decoder_input_ids, | |
encoder_attention_mask, | |
decoder_attention_mask, | |
decoder_lm_labels, | |
) | |
def check_loss_output(self, result): | |
self.parent.assertListEqual(list(result["loss"].size()), []) | |
def create_and_check_t5_model( | |
self, | |
config, | |
encoder_input_ids, | |
decoder_input_ids, | |
encoder_attention_mask, | |
decoder_attention_mask, | |
decoder_lm_labels, | |
): | |
model = T5Model(config=config) | |
model.eval() | |
decoder_output, encoder_output = model( | |
encoder_input_ids=encoder_input_ids, | |
decoder_input_ids=decoder_input_ids, | |
encoder_attention_mask=encoder_attention_mask, | |
decoder_attention_mask=decoder_attention_mask, | |
) | |
decoder_output, encoder_output = model( | |
encoder_input_ids=encoder_input_ids, decoder_input_ids=decoder_input_ids | |
) | |
result = { | |
"encoder_output": encoder_output, | |
"decoder_output": decoder_output, | |
} | |
self.parent.assertListEqual( | |
list(result["encoder_output"].size()), [self.batch_size, self.encoder_seq_length, self.hidden_size] | |
) | |
self.parent.assertListEqual( | |
list(result["decoder_output"].size()), [self.batch_size, self.decoder_seq_length, self.hidden_size] | |
) | |
def create_and_check_t5_with_lm_head( | |
self, | |
config, | |
encoder_input_ids, | |
decoder_input_ids, | |
encoder_attention_mask, | |
decoder_attention_mask, | |
decoder_lm_labels, | |
): | |
model = T5WithLMHeadModel(config=config) | |
model.eval() | |
outputs = model( | |
encoder_input_ids=encoder_input_ids, | |
decoder_input_ids=decoder_input_ids, | |
decoder_attention_mask=decoder_attention_mask, | |
decoder_lm_labels=decoder_lm_labels, | |
) | |
loss, prediction_scores = outputs[0], outputs[1] | |
result = { | |
"loss": loss, | |
"prediction_scores": prediction_scores, | |
} | |
self.parent.assertListEqual( | |
list(result["prediction_scores"].size()), [self.batch_size, self.decoder_seq_length, self.vocab_size] | |
) | |
self.check_loss_output(result) | |
def prepare_config_and_inputs_for_common(self): | |
config_and_inputs = self.prepare_config_and_inputs() | |
( | |
config, | |
encoder_input_ids, | |
decoder_input_ids, | |
encoder_attention_mask, | |
decoder_attention_mask, | |
decoder_lm_labels, | |
) = config_and_inputs | |
inputs_dict = { | |
"encoder_input_ids": encoder_input_ids, | |
"decoder_input_ids": decoder_input_ids, | |
"decoder_attention_mask": decoder_attention_mask, | |
"encoder_attention_mask": encoder_attention_mask, | |
} | |
return config, inputs_dict | |
def setUp(self): | |
self.model_tester = T5ModelTest.T5ModelTester(self) | |
self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37) | |
def test_config(self): | |
self.config_tester.run_common_tests() | |
def test_t5_model(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_t5_model(*config_and_inputs) | |
def test_with_lm_head(self): | |
config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
self.model_tester.create_and_check_t5_with_lm_head(*config_and_inputs) | |
def test_model_from_pretrained(self): | |
for model_name in list(T5_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]: | |
model = T5Model.from_pretrained(model_name, cache_dir=CACHE_DIR) | |
self.assertIsNotNone(model) | |