File size: 8,239 Bytes
75466df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# coding=utf-8
# Copyright 2018 Google T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor
from .utils import CACHE_DIR, require_torch, slow


if is_torch_available():
    from transformers import T5Config, T5Model, T5WithLMHeadModel
    from transformers.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_MAP


@require_torch
class T5ModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (T5Model, T5WithLMHeadModel) if is_torch_available() else ()
    test_pruning = False
    test_torchscript = False
    test_resize_embeddings = False
    is_encoder_decoder = True

    class T5ModelTester(object):
        def __init__(
            self,
            parent,
            batch_size=13,
            encoder_seq_length=7,
            decoder_seq_length=9,
            is_training=True,
            use_attention_mask=True,
            use_labels=True,
            vocab_size=99,
            n_positions=14,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            d_ff=37,
            relative_attention_num_buckets=8,
            dropout_rate=0.1,
            initializer_factor=0.002,
            scope=None,
        ):
            self.parent = parent
            self.batch_size = batch_size
            self.encoder_seq_length = encoder_seq_length
            self.decoder_seq_length = decoder_seq_length
            self.is_training = is_training
            self.use_attention_mask = use_attention_mask
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.n_positions = n_positions
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.d_ff = d_ff
            self.relative_attention_num_buckets = relative_attention_num_buckets
            self.dropout_rate = dropout_rate
            self.initializer_factor = initializer_factor
            self.scope = scope

        def prepare_config_and_inputs(self):
            encoder_input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
            decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

            encoder_attention_mask = None
            decoder_attention_mask = None
            if self.use_attention_mask:
                encoder_attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
                decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)

            decoder_lm_labels = None
            if self.use_labels:
                decoder_lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

            config = T5Config(
                vocab_size=self.vocab_size,
                n_positions=self.n_positions,
                d_model=self.hidden_size,
                d_ff=self.d_ff,
                d_kv=self.hidden_size // self.num_attention_heads,
                num_layers=self.num_hidden_layers,
                num_heads=self.num_attention_heads,
                relative_attention_num_buckets=self.relative_attention_num_buckets,
                dropout_rate=self.dropout_rate,
                initializer_factor=self.initializer_factor,
            )

            return (
                config,
                encoder_input_ids,
                decoder_input_ids,
                encoder_attention_mask,
                decoder_attention_mask,
                decoder_lm_labels,
            )

        def check_loss_output(self, result):
            self.parent.assertListEqual(list(result["loss"].size()), [])

        def create_and_check_t5_model(
            self,
            config,
            encoder_input_ids,
            decoder_input_ids,
            encoder_attention_mask,
            decoder_attention_mask,
            decoder_lm_labels,
        ):
            model = T5Model(config=config)
            model.eval()
            decoder_output, encoder_output = model(
                encoder_input_ids=encoder_input_ids,
                decoder_input_ids=decoder_input_ids,
                encoder_attention_mask=encoder_attention_mask,
                decoder_attention_mask=decoder_attention_mask,
            )
            decoder_output, encoder_output = model(
                encoder_input_ids=encoder_input_ids, decoder_input_ids=decoder_input_ids
            )

            result = {
                "encoder_output": encoder_output,
                "decoder_output": decoder_output,
            }
            self.parent.assertListEqual(
                list(result["encoder_output"].size()), [self.batch_size, self.encoder_seq_length, self.hidden_size]
            )
            self.parent.assertListEqual(
                list(result["decoder_output"].size()), [self.batch_size, self.decoder_seq_length, self.hidden_size]
            )

        def create_and_check_t5_with_lm_head(
            self,
            config,
            encoder_input_ids,
            decoder_input_ids,
            encoder_attention_mask,
            decoder_attention_mask,
            decoder_lm_labels,
        ):
            model = T5WithLMHeadModel(config=config)
            model.eval()
            outputs = model(
                encoder_input_ids=encoder_input_ids,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
                decoder_lm_labels=decoder_lm_labels,
            )
            loss, prediction_scores = outputs[0], outputs[1]
            result = {
                "loss": loss,
                "prediction_scores": prediction_scores,
            }
            self.parent.assertListEqual(
                list(result["prediction_scores"].size()), [self.batch_size, self.decoder_seq_length, self.vocab_size]
            )
            self.check_loss_output(result)

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
            (
                config,
                encoder_input_ids,
                decoder_input_ids,
                encoder_attention_mask,
                decoder_attention_mask,
                decoder_lm_labels,
            ) = config_and_inputs
            inputs_dict = {
                "encoder_input_ids": encoder_input_ids,
                "decoder_input_ids": decoder_input_ids,
                "decoder_attention_mask": decoder_attention_mask,
                "encoder_attention_mask": encoder_attention_mask,
            }
            return config, inputs_dict

    def setUp(self):
        self.model_tester = T5ModelTest.T5ModelTester(self)
        self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_t5_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_t5_model(*config_and_inputs)

    def test_with_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_t5_with_lm_head(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
        for model_name in list(T5_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            model = T5Model.from_pretrained(model_name, cache_dir=CACHE_DIR)
            self.assertIsNotNone(model)